题名

二階L測度及其Choquet積分迴歸模式

并列篇名

Second-order L-Measure and Its Choquet Integral Regression Model

DOI

10.6773/JRMS.200812.0001

作者

劉湘川(Hsiang-Chuan Liu)

关键词

λ測度 ; v測度 ; L測度 ; 二階L測度 ; Choquet積分迴歸模式 ; λ-measure ; v-measure ; L-measure ; second-order L-measure ; Choquet integral regression model

期刊名称

測驗統計年刊

卷期/出版年月

16期_上(2008 / 12 / 01)

页次

1 - 12

内容语文

繁體中文

中文摘要

當綜合評價之多種屬性間,具有潛在交互作用時,傳統可加性測度方法表現欠佳,可考慮採用模糊測度與模糊積分。進行模糊積分前,須先選擇適當之模糊測度,眾所周知Sugeno之λ測度與Zadeh之P測度均只有唯一解,劉湘川先後提出逐次改進之三種多值模糊測度;「μ測度」、「v測度」及「L測度」,上述三種多值模糊測度均可有無限多模糊測度之解可供選擇。本文在L測度之定義式中添加「平方指標」以增進靈敏度,提出進一步改進之「二階L測度」,同時亦提出「基於二階L測度之Choquet 積分迴歸模式」,將更有利於具潛在交互作用資料之綜合評價與預測分析。

英文摘要

When interactions among criteria exist in multiple decision-making problems or forecasting problems, the performance of the traditional additive scale method is poor. Non-additive fuzzy measures and fuzzy integral can be applied to improve this situation. The λ-measure proposed by Sugeno and the P-measure proposed by Zadeh, are the most often used fuzzy measures, but the above two measures both have only one solution of fuzzy measure. Hsiang-Chuan Liu has proposed three polyvalent fuzzy measures: μ-measure, v-measure and L-measure. All of the three improved measures have infinite many solutions of fuzzy measures. In this paper, A square index is adding to two terms in formula of the L-measure for being more sensitive then L-measure, and get an improved fuzzy measures, called ”second-order L-measure”, and a new Choquet integral regression model based on this second-order L-measure is also proposed.

主题分类 基礎與應用科學 > 統計
社會科學 > 教育學
参考文献
  1. 劉湘川(2006)。基於P測度之改進模糊測度及其模糊積分。測驗統計年刊,14(1),1-15。
    連結:
  2. 劉湘川(2006)。λ測度之改進模糊測度及其模糊積分。測驗統計年刊,14(1),16-34。
    連結:
  3. 劉湘川(2006)。λ測度之改進模糊測度及其模糊積分。測驗統計年刊,14(1),16-34。
    連結:
  4. 劉湘川(2007)。基於v測度之Choquet積分迴歸模式。測驗統計年刊,15(2),1-17。
    連結:
  5. 劉湘川(2006)。基於P測度之改進模糊測度及其模糊積分。測驗統計年刊,14(1),1-15。
    連結:
  6. Choquet, G.(1953).Theory of capacities.Annales de l'Institut Fourier,5,131-295.
  7. Dempster, A. P.(1967).Upper and lower probabilities induced by multi-valued mapping.Annals of Mathematical Statistics,38,325-339.
  8. Liu, H. C.,Jheng Y. D.,Lin W. C.,Chen, G. S.(2007).A novel fuzzy measure and its Choquet regression model.Proceedings of International conference on Machine Learning and Cybernetics 2007
  9. Shafer, G.(1976).A Mathematical Theory of Evidence.Princeton, New Jersey:Princeton University Press.
  10. Sugeno, M.(1974).Tokyo, Japan,Tokyo Institute of Technology.
  11. Wang, Z.,Klir, G. J.(1992).Fuzzy measure theory.New York:Plenum Press.
  12. Zadeh, L. A.(1978).Fuzzy sets as a basis for a theory of possibility.Fuzzy Sets and Systems,1(3)
  13. 劉湘川(2006)。廣義μ測度之模糊積分及其在測驗整合計分之應用。第三屆測量統計方法學學術研討會暨臺灣統計方法學學會年會