题名

Liu's Generalized Intuitionistic Fuzzy Sets

DOI

10.6773/JRMS.201006.0069

作者

Hsiang-Chuan Liu

关键词

intuitionistic fuzzy set ; generalized intuitionistic fuzzy set ; generalized intuitionistic fuzzy value ; order-preserving order ; addition-invariant order

期刊名称

測驗統計年刊

卷期/出版年月

18期_上(2010 / 06 / 01)

页次

69 - 81

内容语文

英文

英文摘要

In this paper, an extensional generalized intuitionistic fuzzy set, called Liu's generalized intuitionistic fuzzy set, is proposed. It is showed that not only Atanassov's intuitionistic fuzzy set but also Mondal & Samanta's generalized intuitionistic fuzzy set is a special case of this new one. Responding the generalized intuitionistic fuzzy set, the generalized intuitionistic fuzzy value (GIFV) is also proposed. Some comparable examples are given, and some important notions and basic algebraic properties of this new generalized intuitionistic fuzzy set and its generalized intuitionistic fuzzy value are discussed.

主题分类 基礎與應用科學 > 統計
社會科學 > 教育學
参考文献
  1. Atanassov, K.(1986).Intuitionistic fuzzy sets.Fuzzy Sets and Systems,20,87-96.
  2. Atanassov, K.(1999).Intuitionistic fuzzy sets: Theory and application.Heidelberg, Germany:Physica-Verlag.
  3. Davey, B. A.,Priestley, H. A.(2002).Introduction to Lattices and Order (2nd ed.).Cambridge:Cambridge University Press.
  4. De, S. K.,Biswas, R.,Roy, A. R.(2000).Some operation on intuitionisric fuzzy sets.Fuzzy Sets and Systems,114,477-484.
  5. Dietrich, B. L.,Hoffman, A. J.(2003).On greedy algorithms, partially ordered sets, and submodular functions.IBM Journal of Research and Development,47,25-30.
  6. Golan, J. S.(1999).Semiring and Their Aplication.Kluwer:Dordrecht.
  7. Howie, J. M.(1976).An Introduction to Semigroup Theory.Academic Press.
  8. Liu, H. C.(2010).An addition-invariant partial order of ordered addition monoids of intuitionistic fuzzy values.International Symposium on Computer, Communication, Control and Automation,Tainan, Taiwan:
  9. Mondal, T. K.,Samanta, S. K.(2002).Generalized intuitionistic fuzzy sets.Journal of Fuzzy Mathematics,10,839-861.
  10. Pap, E.(1979).Integration of function with values in completed semi-vector space.Lecture Notes in Mathematics,794,340-347.
  11. Tan, C.,Chen, X.(2010).Intuitionistic fuzzy Choquet integral operator for multi-creteria decision making.Expert Systems with Applications,37,149-157.
  12. Xu, Z. S.(2007).Intuitionistic fuzzy aggregation operators.IEEE Transaction on Fuzzy Systems,15,1179-1187.
  13. Zadeh, L. A.(1965).Fuzzy sets.Information and Control,8,338-356.
被引用次数
  1. Hsiao-Yun Huang,Hsiang-Chuan Liu(2019).Important Inequalities of Intuitionistic Fuzzy Number Based on Liu's Invariant Order.Journal of Data Analysis,14(4),25-38.