题名

A New Approach on Standard Setting with Fuzzy Statistical Analysis

并列篇名

模糊統計在標準設定上的應用

DOI

10.6773/JRMS.201112.0001

作者

謝名娟(Ming-Chuan Hsieh)

关键词

模糊理論 ; 書籤標定法 ; 標準設定 ; 隸屬度 ; fuzzy logic ; bookmark procedure ; standard setting ; fuzzy mean ; membership functions

期刊名称

測驗統計年刊

卷期/出版年月

19期_下(2011 / 12 / 01)

页次

1 - 11

内容语文

英文

中文摘要

模糊統計常用來解決人類多元複雜的曖昧與不確定的現象,而本研究則嘗試利用模糊理論來進行學習成就測驗中的標準設定。在測驗領域,書籤標定法為一種最常用的方法。然而,標準設定成員常面臨無法找出一個明確的切點來放置書籤位置,而在兩或三個書籤切點中徘徊猶豫,進而影響到標準設定成員們共識的形成。本研究旨在將模糊理論融入在傳統的書籤標定法中,並用來找出最佳的切斷分數。實徵研究之結果顯示,模糊書籤標定法有其使用上的優點,尤其在成員決定切斷分數時,比傳統的書籤標定法更容易形成共識。

英文摘要

Fuzzy bookmark method has some promising features that help resolving the unclear thinking in human logic and recognition, in this paper, the author use fuzzy statistical analysis technique and a novel modified bookmark procedure to find an optimal cutoff score. Empirical study shows that our proposed fuzzy bookmark procedure has the advantages in finding an appropriate standing setting than the conventional one. The comparison results of these two procedures are also presented and discussed.

主题分类 基礎與應用科學 > 統計
社會科學 > 教育學
参考文献
  1. Bellman, R. E.,Zadeh, L. A.(1970).Decision-making in a fuzzy environment.Management Science,17(4),141-164.
  2. Berk, R. A.(1996).Standard setting: The next generation (where few psychometricians have gone before!).Applied Measurement in Education,9(3),215-235.
  3. Cizek, G. J.,Bunch, M. B.(2007).Standard setting: A guide to establishing and evaluating performance standards on tests.Thousand Oaks, California:Sage Publication Ltd..
  4. Guariso, G.,Rizzoli, A.,Werthner, H.(1992).Identification of model structure via qualitive simulation.IEEE Trans. on Systems, Man, and cybernetics,22(5),1075-1086.
  5. Huynh, H.(2006).A clarification on the response probability criterion RP 67 for standard settings based on bookmark and item mapping.Educational Measurement: Issue and Practice,2,19-20.
  6. Kosko, B.(1993).Fuzzy thinking: the new science of fuzzy logic.New York:Hyperion.
  7. Lewis, D. M.,Mitzel, H. C.,Green, D. R.(1996).Standard setting: A bookmark approach.Council of Chief State School Officers National Conference on Large Scale Assessment,Boulder, CO:
  8. Lowen, R.(1990).A fuzzy language interpolation theorem.Fuzzy Sets and Systems,34,33-38.
  9. Nedelsky, L.(1954).Absolute grading standards for objective tests.Educational and Psychological Measurement,14,3-19.
  10. Nguyen, H.,Wu, B.(2002).Fuzzy Mathematics and Statistical Applications.Taipei:Hua-Tai Book Company.
  11. Sireci, S. G.,Hauger, J.,Wells, C. S.,Lewis, C.,Delton, J.,Zenisky, A.(2007).Center for Educational Assessment Research Report No. 618Center for Educational Assessment Research Report No. 618,Amherst, MA:Center for Educational Assessment, University of Massachusetts Amherst.
  12. Thorndike, R. L.(ed.)(1971).Educational Measurement.Washington, DC:American Council on Education.
  13. Tseng, T.,Klein, C.(1992).A new Algorithm for fuzzy multicriteria decision making.International Journal of Approximate Reasoning,6,45-66.
  14. Williams, N.,Schulz, E. M.(2005).An investigation of response probability values used in standard setting.meeting of the National Council on Measurement in Education,Montreal, Canada:
  15. Wu, B.,Sun, C.(1996).Fuzzy statistics and computation on the lexical semantics.11th Pacific Asia Conference on Language, Information and Computation,Seoul:
  16. Zadeh, L. A.(1965).Fuzzy Sets.Information and Control,8,338-353.
被引用次数
  1. 李柳儀(2013)。敘說三位客家籍女性校長之生涯發展經驗。學校行政,86,90-110。
  2. (2016)。社會工作者協助中老年喪偶婦女適應途徑之探討。社區發展季刊,153,343-355。