题名

臺灣中部地區國小高年級學生幾何推理層次的分布情形

并列篇名

The Distributions of the Van Hiele Geometrical Reasoning Level of High-Grade Elementary School Students

DOI

10.6773/JRMS.201112.0004

作者

吳德邦(Der-Bang Wu);馬秀蘭(Hsiu-Lan Ma);陳姿良(Tzu-Liang Chen);許天維(Tian-Wei Sheu)

关键词

小學 ; 幾何 ; 推理 ; van Hiele ; 思考層次 ; van Hiele ; elementary school ; thinking level ; geometric reasoning

期刊名称

測驗統計年刊

卷期/出版年月

19期_下(2011 / 12 / 01)

页次

51 - 71

内容语文

繁體中文

中文摘要

本研究旨在分析臺灣中部地區高年級學生在van Hiele幾何推理層次的分布情形,以「吳-馬-陳氏幾何推理層次測驗」為研究工具,研究對象為臺灣中部地區2009年第二學期在學的國小學生五年級的學生328人及六年級的學生413人,全部樣本大小為741人。得到研究結果摘述如下:A縣和B市的學生均是分布在創造性層次的學生最多,其次分布在批判性層次。縣市與層次兩變項有相關,且B市在幾何推理層次的表現優於A縣,顯示在van Hiele幾何推理層次中,兩縣市的學生有著明顯的城鄉差異,這也代表著教育水平越高的縣市,越多學生達到較高層次,再次顯示教學和引導能提升學童的幾何思考概念,這點與van Hiele的理論相吻合。五年級和六年級的學生均是分布在創造性層次的學生最多,其次分布在批判性層次。五年級、六年級的學生在van Hiele幾何推理的發展可能比van Hiele立體幾何概念的發展、van Hiele平面幾何概念在三角形部份的發展以及van Hiele平面幾何概念在四邊形部份的發展都高一個層次。年級與層次兩變項沒有相關,顯示其年級愈高,分布在較高層次的人數並沒有明顯增多。男學生和女學生均是分布在創造性層次的學生最多,其次分布在批判性層次。性別對層次兩變項沒有顯著差異。

英文摘要

The purpose of this study is to discuss the distributions of the van Hiele geometrical reasoning levels of 5(superscript th) and 6(superscript th) graders. This study uses ”Wu-Ma-Chen’s van Hiele Geometric Reasoning Test” (GRT) as the research tool, choosing 741 fifth- and sixth-grade students in Central Taiwan as the subjects. The GRT was developed by the authors in 2010. Using the Chi-Square Test to analyze the data, the conclusions were drawn as follows: (1) Most of A county’s and B city’s students are in the creative level. In the van Hiele geometrical reasoning level, scores of students from B City are better than those from A County. (2) Most of fifth- and sixth-grade students are in the creative level, but the number of students is not obviously higher in the higher grade. (3) Most of male and female students are in the creative level, but in the van Hiele geometrical reasoning level, the scores of those students in the different genders are not obviously different.

主题分类 基礎與應用科學 > 統計
社會科學 > 教育學
参考文献
  1. 吳德邦、馬秀蘭、李懿芳(2007)。編製吳─馬─李氏van Hiele立體幾何思考層次測驗之歷程。測驗統計年刊,15(2),16-42。
    連結:
  2. 馬秀蘭(2007)。學生思考過程之探究:以實務推理為例。科學教育學刊,15(4),387-416。
    連結:
  3. 陳進春、吳德邦(2005)。醫護專科學校學生van Hiele幾何思考層次之研究。測驗統計年刊,13(2),230-260。
    連結:
  4. 教育部(2000)。國民中小學九年一貫課程暫行綱要─數學學習領域。臺北市:教育部。
  5. 教育部(2003)。國民中小學九年一貫課程綱要數學學習領域。臺北市:教育部。
  6. Angell, R. B.(1964).Reasoning and logic.New York:Meredith Publishing Company.
  7. Carl, I. M.(ed.)(1995).Prospects for school mathematics.Reston, VA:National Council of Teachers of Mathematics.
  8. Coles, M. J.(ed.),Robinson, W. D.(ed.)(1989).Teaching thinking.Bristol:The Bristol Press.
  9. Fuys, D.,Geddes, D.,Tischler, R.(1988).The van Hiele model of thinking in geometry among adolescents.Reston, VA:National Council of Teachers of Mathematics.
  10. Gardner, H.(1983).Frames of mind: The theory of multiple intelligences.New York:Basic Books.
  11. Garfield, J.,Gal, I.(1999).Assessment and statistics education: Current challenges and directions.International Statistical Review,67,1-12.
  12. Gartenhaus, A. R.(1984).,未出版
  13. Greer, B.(2000).Statistical thinking and learning.Mathematical Thinking and Learnin,2(1&2),1-10.
  14. Grouws, D. A.(ed.)(1992).Handbook of research on mathematics teaching and learning.Reston, VA:National Council of Teachers of Mathematics, Inc..
  15. Guilford, J. P.(1977).Way beyond the IQ.Buffalo, NY:Creative Education Foundation, Inc..
  16. Krulik, S.,Rudnick, J. A.(1993).Reasoning and problem solving: A handbook for elementary school teachers.Needham Heights, Mass:Allyn and Bacon. Inc..
  17. Krulik, S.、Rudnick, J. A.、吳德邦譯、馬秀蘭譯(2009)。小學數學推理與解題習作簿。臺北市:心理出版社。
  18. Krulik, S.、Rudnick, J. A.、吳德邦譯、馬秀籣譯(2009)。小學數學教學資源手冊─推理與解題導向。臺北市:心理出版社。
  19. Krulik, S.、Rudnick, J. A.、馬秀蘭譯、吳德邦譯(2009)。中學數學推理與解題習作簿。臺北市:心理出版社。
  20. Krulik, S.、Rudnick, J. A.、馬秀蘭譯、吳德邦譯(2009)。中學數學教學資源手冊─推理與解題導向。臺北市:心理出版社。
  21. Lajoie, S. P.(ed.)(1998).Reflections on statistics: Learning, teaching, and assessment in grades K-12.Mahwah, NJ:Lawrence Erlbaum Associates.
  22. Lindquist, M.(ed.),Shulte, A. P.(ed.)(1987).Learning and teaching geometry, K-12.Reston, VA:National Council of Teachers of Mathematics.
  23. Liu, H. C.,Chen, W. S.,Chen, C. C.,Jheng,Y. D.,Wu, D. B.(2011).Choquet Integral with Respect to High Order Extensional L-Measure.Applied Mechanics and Materials,44-47,3579-3583.
  24. Liu, H. C.,Wu, D. B.,Jheng,Y. D.,Sheu, T. W.(2009).Theory of Multivalent Delta-Fuzzy Measures and its Application.WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS,6(6),1061-1070.
  25. Molina, D. D.(1990).Austin,The University of Texas at Austin.
  26. Moore, D. S.(1998).Statistics among the liberal arts.Journal of the American 123 Statistical Association,93,1253-1259.
  27. National Council of Teachers of Mathematics(2000).Principles and standards for school mathematics.Reston, VA:National Council of Teachers of Mathematics.
  28. National Council of Teachers of Mathematics(1989).Curriculum and evaluation standards for school mathematics.Reston, VA:National Council of Teachers of Mathematics.
  29. Piaget, J.,Inhelder, B.,Szeminska, A.(1960).The child's conception of geometry.New York:Basic Book.
  30. Russell, Bertrand、劉福增譯(1987)。哲學問題及精釆附集。臺北市:心理。
  31. Senk, S. L.(1989).van Hiele levels and achievement in writing geometry proofs.Journal for Research in Mathe matics Education,20(3),309-321.
  32. Sternberg, R. J.(1997).Successful intelligence.New York:Penguin, Plume.
  33. Stiff, L. V.(ed.),Curcio, F. R.(ed.)(1999).Developing mathematical reasoning in grades k-12.Reston, VA:National Council of Teachers of Mathematics.
  34. Torrance, E. P.,Orlow, E. B.(1986).Torrance tests of creative thinking streamlined (revised) manual.Bensenville, IL:Scholastic testing Service.
  35. Treffinger, D. J.,Isaksen, S. G.(1992).Creative problem solving: An introduction.Sarasota, FL:Center for Creative Learning, Inc..
  36. Usiskin, Z.(1982).van Hiele levels and achievement in secondary school geometry.Chicago, IL:University of Chicago, Department of Education.
  37. Van Hiele, P. M.(1986).Structure and insight: A theory of mathematics education.Orlando, FL:Academic Press.
  38. Wu, D. B.(2010).Taichung, Taiwan,Taichung University of Education.
  39. Wu, D. B.,Ma, H. L.(2009).An Application of GM(0,N) on Analyzing the First van Hiele Geometrical Thinking Level.Journal of Grey System,12(4),161-168.
  40. Wu, D. B.,Ma, H. L.(2006).The distributions of van Hiele levels of geometric thinking among 1st through 6th graders.Proceedings 30th Conference of the international group for the psychology of mathematics education,Prague, Czech Republic:
  41. Wu, D. B.,Ma, H. L.(2010).An application of GM(0,N) to analyze the Ma-Wu's test of Practical reasoning abilities.Proceedings of the Sixth IASTED International Conference Advances in Computer Science and Engineering (ACSE 2010),Sharm El-Sheikh, EGYPT:
  42. Wu, D. B.,Ma, H. L.(2011).Analyzing the Test of Problem Solving Abilities by Using GM(0,N).Applied Mechanics and Materials,44-47,3922-3926.
  43. 毛連塭、吳清山、陳麗華(1992)。康乃爾批判思考測驗修訂報告。初等教育學刊,1,11-28。
  44. 吳德邦(2000)。臺灣中部地區國小學童van Hiele幾何思考層次之研究─晤談部份。進修學訊年刊,6,11-32。
  45. 吳德邦(2004)。van Hiele的近況及其理論的簡介。國教輔導月刊,44(1),21-25。
  46. 吳德邦(1998)。臺灣中部地區國小學童van Hiele幾何思考層次之研究。八十六年度數學教育專題研究計畫成果討論會摘要,臺北市:
  47. 吳德邦(1999)。簡介范析理幾何思考理論。進修學訊年刊,5,47-86。
  48. 吳德邦、李懿芳、馬秀蘭(2006)。立體幾何思考層次測驗編製歷程之研究。數學考卷編製暨評析研討會論文集,臺中市:
  49. 吳德邦、馬秀蘭、陳姿良、許天維(2010)。編製吳─馬─陳氏van Hiele幾何推理測驗之歷程。2010第二屆科技與數學教育學術研討會論文集,臺中市:
  50. 吳德邦、馬秀蘭、藍同利(2006)。探究國小視覺型與觸覺型兒童在繪製三角形活動之概念分析。臺中教育大學學報:數理科技類,20(2),99-138。
  51. 吳德邦、馬秀蘭、藍同利(2006)。小青的三角形概念─從Duval理論的觀點探究一位國小五年級視覺型兒童之個案研究。科學教育研究與發展季刊,42,78-116。
  52. 吳德邦、陳姿良、馬秀蘭、紀小玉(2009)。九年一貫課程實施中國小學童在幾何圖形概念上之理解情形。第一屆科技與數學教育學術研討會論文集,臺中市:
  53. 李源順、王美娟、蘇意雯、陳怡仲(2009)。臺灣學生在TIMSS的數學表現及其啟示。研習資訊,,26(6),61-71。
  54. 周淑惠(1995)。幼兒數學新論─教材教法。臺北市:心理出版社。
  55. 洪文東(2000)。從問題解決的過程培養學生的科學創造力。屏師科學教育,11,52-62。
  56. 洪明賢(2003)。碩士論文(碩士論文)。臺北市,國立臺灣師範大學。
  57. 張玉成(1998)。思考技巧與教學。臺北市:心理出版社。
  58. 張春興(1991)。現代心理學。臺北市:東華書局。
  59. 張春興(1992)。張氏心理學辭典。臺北市:東華書局。
  60. 教育部(1993)。國民小學課程標準。臺北市:台捷國際文化實業股份有限公司。
  61. 陳龍安(1998)。創造思考教學的理論與實際。臺北市:心理出版社。
  62. 賈馥茗(1976)。英才教育。臺北:開南書局。
  63. 劉好(1993)。國小數學科新課程中幾何教材的設計。國立嘉義師範學院八十二學年度數學教育研討會論文集,嘉義:
  64. 譚寧君(1993)。兒童的幾何觀─從van Hiele幾何思考的發展模式談起。國民教育,33(5/6),12-17。