题名 |
A Two-step Method to Construct Credit Scoring Models with Data Mining Techniques |
DOI |
10.6702/ijbi.2006.1.1.5 |
作者 |
Hian Chye Koh;Wei Chin Tan;Chwee Peng Goh |
关键词 |
Credit scoring ; data mining techniques ; construction of models ; combination of model ; meta-modeling |
期刊名称 |
International Journal of Business and Information |
卷期/出版年月 |
1卷1期(2006 / 06 / 01) |
页次 |
96 - 118 |
内容语文 |
英文 |
英文摘要 |
Credit scoring can be defined as a technique that helps credit providers decide whether to grant credit to consumers or customers. Its increasing importance can be seen from the growing popularity and application of credit scoring in consumer credit. There are advantages not only to construct effective credit scoring models to help improve the bottom-line of credit providers, but also to combine models to yield a better performing combined model. This paper has two objectives. First, it illustrates the use of data mining techniques to construct credit scoring models. Second, it illustrates the combination of credit scoring models to give a superior final model. The paper also highlights the prerequisites and limitations of the data mining approach. |
主题分类 |
基礎與應用科學 >
資訊科學 社會科學 > 經濟學 社會科學 > 管理學 |