题名

總體變數之領先、同時與落後性質之認定與指標構成項目之選取-LARS方法的運用

并列篇名

An Evaluation of Component Series of Business Indicators: An Application of the LARS Method

作者

陳淑玲(Shu-Ling Chen);黃裕烈(Shu-Ling Chen)

关键词

景氣指標 ; 景氣循環 ; Least angle regression ; Business indicators ; Business cycle

期刊名称

臺灣經濟預測與政策

卷期/出版年月

44卷2期(2014 / 03 / 01)

页次

133 - 170

内容语文

繁體中文

中文摘要

本文利用Efron et al.(2004)所介紹的least angle regression(以下簡稱LARS)方法,試圖認定總體數列的領先、同時與落後性質,並依此結果從中挑選出適當的變數編製景氣指標。在實證分析中,我們先從眾多總體資訊中選出103筆與景氣循環相關的資料,再透過LARS方式進行兩階段的篩選。在第一階段的篩選過程中,我們主要是將103筆資料區分成領先、同時與落後群組(groups),而第二階段的目的則是從各個群組中挑選出重要且對基準循環數列有較佳解釋力的變數。我們發現,LARS所篩選出的結果與經建會所認定的結果大致相同,特別是同時指標的構成項目,兩造所認定的結果均一致。若就第二階段的篩選結果來分析,我們發現不同樣本期間變數的排序順位可能會改變;但也有某些變數不受樣本期間改變的影響,顯示這些變數與基準循環數列之間的關聯性具有穩健的特性。最後,我們也嘗試依據第二階段的篩選結果來編製新的領先指標,我們發現新的指標在近期的領先效果比現行公佈的領先指標還要好。

英文摘要

As an alternative to the method currently used by the Council for Economic Planning and Development (CEPD), we apply the least angle regression (LARS) method proposed by Efron et al. (2004) to select the macroeconomic series used to construct composite business indicators. We use a two-step approach. First, we obtain 103 macroeconomic series and assign each of them to one of three subgroups-leading, coincident and lagging-based on their ability to predict the reference cycle series. Second, within each subgroup, we rank the assigned series based on their ability to predict the reference cycle series and construct a composite business indicator based on these rankings. Our results suggest that the macroeconomic series selected via the LARS method tend to agree with those currently used by the CEPD. However, the power of the selected macroeconomic series to predict reference cycle series varies with the size of the sample selected. Moreover, the composite leading indicator constructed from the macroeconomic series selected via the LARS method predicts turning points of the business cycle more effectively than the existing CEPD leading indicator.

主题分类 社會科學 > 經濟學
参考文献
  1. Abberger, K.(2007).IfoWorking PaperIfoWorking Paper,Ifo Institute for Economic Research at the University of Munich.
  2. Aruoba, S. B.,Diebold, F. X.,Scotti, C.(2009).Real-Time Measurement of Business Conditions.Journal of Business and Economic Statistics,27(4),417-427.
  3. Bai, J.,Ng, S.(2008).Forecasting Economic Time Series Using Targeted Predictors.Journal of Econometrics,146(2),304-317.
  4. Bai, J.,Ng, S.(2006).Evaluating Latent and Observed Factors inMacroeconomics and Finance.Journal of Econometrics,131,507-537.
  5. Bai, J.,Ng, S.(2008).LargeDimensional Factor Analysis.Foundations and Trends in Econometrics,3(2),89-163.
  6. Boivin, J.,Ng, S.(2006).AreMoreData Always Better for Factor Analysis?.Journal of Econometrics,132(1),169-194.
  7. Camacho, M.,Perez-Quiros, G.(2002).This Is What the Leading Indicators Lead.Journal of Applied Econometrics,17(1),61-80.
  8. Diebold, F. X.,Mariano, R. S.(1995).Comparing Predictive Accuracy.Journal of Business and Economic Statistics,13(3),253-263.
  9. Efron, B.,Hastie, T.,Johnstone, I.,Tibshirani, R.(2004).Least Angle Regression.Annals of Statistics,32(2),407-499.
  10. Eickmeier, S.,Ng, T.(2011).Forecasting National Activity Using Lots of International Predictors: An Application to New Zealand.International Journal of Forecasting,27(2),496-511.
  11. Estrella, A.,Mishkin, F. S.(1998).Predicting U.S. Recessions: Financial Variables as Leading Indicators.The Review of Economics and Statistics,80(1),45-61.
  12. Furnival, G. M.,Wilson, R. W.(1974).Regression by Leaps and Bounds.Technometrics,16(4),499-511.
  13. Hamilton, J. D.(1989).A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle.Econometrica,57(2),357-384.
  14. Hastie, T.,Tibshirani, R.,Friedman, J.(2009).The Elements of Statistical Learning: Data Mining, Inference and Prediction.New York:Springer.
  15. Madigan, D.,Ridgeway, G.(2004).Discussion of "Least Angle Regression" by Efron et al.Annals of Statistics,32(2),465-469.
  16. Miller, A.(2002).Subset Selection in Regression.Boca Raton, FL:Chapman & Hall.
  17. Nilsson, R.,Gyomai, G.(2011).OECD Statistics Working Papers, No. 2011/04OECD Statistics Working Papers, No. 2011/04,未出版
  18. Ralston, A.(ed.),Wilf, H. S.(ed.)(1960).Mathematical Methods for Digital Computers.New York:Wiley.
  19. Stock, J. H.,Watson, M. W.(2002).Macroeconomic Forecasting Using Diffusion Indexes.Journal of Business and Economic Statistics,20(2),147-162.
  20. Tibshirani, R.(1996).Regression Shrinkage and Selection via the LASSO.Journal of the Royal Statistical Society, Series B (Methodological),58(1),267-288.
被引用次数
  1. 蕭宇翔,林依伶(2020)。臺灣景氣狀態之預測。臺灣經濟預測與政策,51(1),1-56。
  2. (2016)。合宜核心物價領先指標之建置。中央銀行季刊,38(1),5-34。
  3. (2019)。台灣基本通膨估值(UIG)之建構與分析。中央銀行季刊,41(3),29-58。
  4. (2024)。大量變數下的高頻率平滑化「台灣景氣指標」。經濟論文叢刊,52(1),77-118。