题名 |
應用資料探勘之群集分析法於小兒氣喘表現型態 |
并列篇名 |
Identification of Childhood Asthma Phenotypes Using Cluster Analysis: a Data Mining |
DOI |
10.6200/TCMJ.202012_17(4).0007 |
作者 |
郭靜燕(Ching-Yen Kuo);吳炯義(Chiung-Yi Wu);詹金淦(Chin-Kan Chan);詹前隆(Chien-Lung Chan) |
关键词 |
小兒氣喘 ; 表現型態 ; 群集分析法 ; 資料探勘 ; childhood asthma ; asthma phenotypes ; cluster analysis ; data mining |
期刊名称 |
北市醫學雜誌 |
卷期/出版年月 |
17卷4期(2020 / 12 / 30) |
页次 |
425 - 434 |
内容语文 |
繁體中文 |
中文摘要 |
目的:本研究以資料探勘之群集分析法來區別小兒氣喘不同表現型態,以提供臨床醫療治療及預防策略參考。方法:以2012至2016某區域醫院參加中央健康保險署「氣喘醫療給付改善方案」之6至18歲小兒氣喘收案病人為本研究對象,以資料探勘之二階段群集分析法進行小兒氣喘分群,以區別不同氣喘表現型態。結果:2012~2016年6至18歲氣喘收案病患共334人,男性140人(41.9%),女性194人(58.1%);平均年齡8.4歲;以群集分析法分析小兒氣喘表現型態可分為3群,第一群有129個個案,嚴重度為輕中度,嗜伊紅白血球陽離子蛋白(ECP)≧15;第二群有90個個案,屬嚴重個案;第三群有115個個案,嚴重度為極輕、輕中度,ECP<15。結論:本研究將小兒氣喘分群3種不同表現型態,嚴重度是分群的依據,本研究結果可提供臨床醫療治療及預防策略參考,並能加強氣喘病人之追蹤管理及衛教服務,提供完整且連續性的照護模式。 |
英文摘要 |
Objective: To explore asthma phenotypes in children using cluster analysis and thus, provide a reference for the treatment and prevention. Methods: Asthma children aged 6-18 years who joined the Asthma Improvement Program of National Health Insurance between 2012 and 2016 in a regional hospital were the research samples. A two-stage cluster analysis was used to differentiate the asthma phenotypes. Results: A total of 334 asthma patients with an average age of 8.4 years were admitted, among which 140 were male (41.9%) and 194 (58.1%) were female. The pediatric asthma phenotypes were divided into three groups. The first group consisted 129 cases with a mild-to-moderate disease severity and an ECP≧15; the second group consisted 90 severe cases; the third group consisted 115 cases with extremely low-to-medium disease severity and an ECP <15. Conclusion: This study categorized pediatric asthma phenotypes into three groups based on the disease severity. |
主题分类 |
醫藥衛生 >
醫藥衛生綜合 |