题名 |
The Number of Minimal Vertex Covers in the Product of Stars or Paths |
并列篇名 |
星形或路徑乘積圖中最小點覆蓋計數 |
DOI |
10.29850/LTJ.200806.0002 |
作者 |
周敏貞(Min-Jen Jou);林正忠(Jenq-Jong Lin) |
关键词 |
最小點覆蓋 ; 乘積 ; 星形 ; 路徑 ; minimal vertex cover ; product ; star ; path |
期刊名称 |
嶺東學報 |
卷期/出版年月 |
23期(2008 / 06 / 01) |
页次 |
11 - 20 |
内容语文 |
英文 |
中文摘要 |
圖形G之點覆蓋,爲G點集之子集合S,且使得圖形G中任一邊的兩個端點,至少有一個屬於S‧若一點覆蓋的子集合均不爲點覆蓋,則稱此點覆蓋爲最小點覆蓋。兩個圖形G和H之(卡式)乘積圖G×H定義爲具有點集V(G)×V(H)且當u1=v1,u2與v2在H中相鄰或當u2=v2,u1與v1在G中相鄰,則稱(u1, u2)與(v1,v2)在G×H中相鄰。在本篇論文中,我們確定了星形或星形與點數不大於5之路徑乘積圖中最小點覆蓋的數目。 |
英文摘要 |
Suppose G is a graph. A set S ⊆ V (G) is called a vertex cover of G if each edge of G is incident with at least one vertex of S. A minimal vertex cover is a vertex cover which contains no proper vertex cover. The product (also called cartesian product) G×H of two graphs G and H with vertex sets V (G) and V (H), respectively, has the cartesian product V (G)×V (H) as its set of vertices. Two vertices (u1, u2) and (v1, v2) are adjacent if u1=v1, u2 and v2 are adjacent in H or u2=v2, u1 and v1 are adjacent in G. In this paper, we determine the number of minimal vertex covers in the product of two stars or of a star and a path of order at most 5. |
主题分类 |
人文學 >
人文學綜合 人文學 > 歷史學 基礎與應用科學 > 資訊科學 社會科學 > 社會科學綜合 |
参考文献 |
|