题名

智慧監控製造之資訊管理系統

并列篇名

Information Management System for Intelligent Monitoring Manufacturing

作者

陳健忠(Chien-Chung Chen);黃光宇(Kuang-Yu Huang);徐玉鵑(Yu-Chuan Hsu);陳誼玲(Yi-Ling Chen)

关键词

自動生產製造 ; Arduino ; Raspberry Pi ; 視覺化 ; Automatic Manufacturing ; Arduino ; Raspberry Pi ; Visualization

期刊名称

嶺東學報

卷期/出版年月

47期(2020 / 12 / 01)

页次

161 - 184

内容语文

繁體中文

中文摘要

從製造業到「智」造業,產業革命已經慢慢地顛覆全世界。全球製造業結合物聯網、雲端、大數據與「智」造業,形成人類第四波工業革命。特別是「智」造業為工業4.0的代表,如何結合物聯網在生產設備當中加裝感測器蒐集生產數據,使決策者快速掌握生產狀態,並準確的做決策來加速生產過程,因此本研究模擬自動生產製造的過程,透過Arduino與Raspberry Pi蒐集3D列印機之數據值,進而建立智慧製造之預測及維護資訊系統。本研究方法結合Arduino與Raspberry Pi蒐集3D列印機操作環境之相關數據,將其數據值以即時視覺化方式呈現於行動裝置上,使決策者能迅速掌握自動生產製造的過程;相關數據也同時儲存於phpMyAdmin的資料庫中,當資料庫中所儲存的數據值足夠充分時,可應用於未來的故障模式預測或其他決策分析之使用。本研究為使決策者能迅速掌握自動生產製造的過程,故建置智慧監控製造之資訊系資訊系統:本研究達到以下之功能:1.接收Arduino感知模組數據:透過Arduino UNO開發版接收3D列印機之外在環境數據值。2.接收自動生產製造過程數據:透過Raspberry Pi接收自動生產製造過程數據值。3.蒐集暨分析生產數據:將Arduino UNO開發版與Raspberry Pi 所接收之數據值,傳送至Raspberry Pi的資料伺服器中。4.網頁介面顯示:使用python Flask模組建立網站伺服器後,透過行動裝置,讓決策者能即時掌握自動生產製造狀態。5.數據顯示視覺化:將Arduino與Raspberry Pi所蒐集自動生產製造過程之數據值,以簡易的圖形介面,顯示於行動裝置。

英文摘要

From the manufacturing generation to the "smart" manufacturing generation, the industrial revolution has slowly subverted the world. The global manufacturing industry combines the Internet of Things, the cloud, big data and "intelligent" manufacturing to form the fourth wave of human industrial revolution. In particular, "smart" manufacturing industry is a representative of Industry 4.0. How to integrated sensors with production equipment to collect production data in the Internet of Things would enhance decision makers quickly grasp the production status and make accurate decisions to speed up the production process. This study is used to improve the process of simulating automatic production and manufacturing, collect data values of 3D printers through Arduino and Raspberry Pi, and then establish an intelligent monitoring manufacturing information system. This research method combines Arduino and Raspberry Pi to collect relevant data of the operating environment of the 3D printer, and presents the virtualized data on the mobile device in real-time, so that decision makers can quickly master the process of automatic manufacturing; the relevant data is also It is stored in the database of phpMyAdmin. It can be used for future failure mode prediction or other decision analysis as the manufacturing data stored in the database had enough diverse patterns and amount. In order to enable decision makers to quickly master the process of automatic manufacturing, this research builds an intelligent monitoring manufacturing information system: This study achieves the following functions: 1. Obtain Arduino sensing module data: Obtain external environment data value of 3D printer through Arduino UNO development version. 2. Receive automatic production and manufacturing process data: Receive automatic production and manufacturing process data values through Raspberry Pi. 3. Collect and analyze production data: send the data value received by Arduino UNO development version and Raspberry Pi to the data server of Raspberry Pi. 4. Display the obtained data using web interface: After creating a web server using the python Flask module, through a mobile device, decision makers can instantly grasp the status of automatic production and manufacturing. 5. Visualize and display the obtained data: The data values collected by Arduino and Raspberry Pi in the automatic manufacturing process are displayed on the mobile device with a simple graphical interface.

主题分类 人文學 > 人文學綜合
人文學 > 歷史學
基礎與應用科學 > 資訊科學
社會科學 > 社會科學綜合
参考文献
  1. 林世健(2013)。雲端印刷的創新應用─3D列印。中華印刷科技年報,65-75。
    連結:
  2. 陳政,李翔祖(2016)。從工業1.0談到工業4.0。中華印刷科技年報,53-60。
    連結:
  3. 12.HT11 Temperature and Humidity Sensor, (2018/12/5)維基百科,擷取於2018/12/5. https://www.dfrobot.com/wiki/index.php/DHT11_Temperature_and_Humidity_Sensor_(SKU:_DFR0067).
  4. uArm Swift Pro 多功能手臂專業版,普特企業有限公司,擷取於2018/12/5https://www.playrobot.com/arm/1781 -uarm-swift-pro-blockly-ufactory.html
  5. Liawatimena, S.,Warnars, H. L. H. S.,Trisetyarso, A.,Abdurahman, E.,Soewito, B.,Wibowo, A.,Abbas, B. S.(2018).Django Web Framework Software Metrics Measurement Using Radon and Pylint.2018 Indonesian Association for Pattern Recognition International Conference (INAPR)
  6. Susanto, H.,Pramana, R.,Mujahidin, M.(2013).Perancangan Sistem Telemetri Wireless Untuk Mengukur Suhu dan Kelembaban Berbasis Arduino Uno R3 ATmega328P dan XBee Pro.Jurnal Sustainable Jurnal Hasil Penelitian dan Industri Terapan,4(1),2087-5347.
  7. Ventola, C. L.(2014).Medical applications for 3D printing: current and projected uses.Pharmacy and Therapeutics,39(10),704-711.
  8. Vogel, P.,Klooster, T.,Andrikopoulos, V.,Lungu, M.(2017).A Low-Effort Analytics Platform for Visualizing Evolving Flask-Based Python Web Services.2017 IEEE Working Conference on Software Visualization (VISSOFT)
  9. Vujović, V.,Maksimović, M.(2014).Raspberry Pi as a Wireless Sensor node: Performances and constraints.2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
  10. Williamson, B.(2016).Digital education governance: data visualization, predictive analytics, and real time policy instruments.Journal of Education Policy,31(2),123-141.
  11. 林鼎勝(2014)。3D列印的發展現況。科學發展,503,32-37。
  12. 金翼(2016)。高雄市,中山大學資訊工程學系研究所。
  13. 張曙(2014)。工业4.0和智能制造。機械設計與製造工程,8,1-5。
  14. 戴玉佩,戴谷州,吳修福(2007).程式開發、網頁開發.台北:悅知文化.