题名

小六學生不同代數表徵的解題表現、教師布題順序與代數教學信念之研究

并列篇名

The Study of Six Graders' Problem-Solving Performance, Teachers' Problem Posing and Teaching Beliefs in Different Algebra Problems

DOI

10.6151/CERQ.2012.2002.03

作者

劉家樟(Chia-Chang Liu);楊凱琳(Kai-Lin Yang);許慧玉(Hui-Yu Hsu)

关键词

符號優先教學觀 ; 代數教學信念 ; 符號題 ; 文字題 ; 故事題 ; symbol-precedence view ; teaching beliefs in algebra ; equation problems ; word-equation problems ; story problems

期刊名称

當代教育研究季刊

卷期/出版年月

20卷2期(2012 / 06 / 30)

页次

93 - 133

内容语文

繁體中文

中文摘要

本研究主要探討三個問題,包括:第一是臺灣國小六年級學生在不同代數試題表徵(故事、文字、符號)的解題表現:第二是國小數學教師對這三類試題表徵的教學布題序列及背後的教學信念:第三是學生的解題表現與教師信念間之一致性檢驗。研究結果發現:一、在相同數學內涵之下,國小六年級學生在符號題表現最好,故事題表現最差。但進一步分析後發現,學生雖在符號題的答題較佳,代數思維的發展仍未臻成熟。二、約80%國小數學科教師的布題順序為符號、文字、故事,且具有符號優先教學觀(symbol-precedence view)。這些教師認為,學生在符號題表現較好,文字題應直接教導正確解題法或先熟悉符號操作過程,也較贊同代數方程式是解決故事或文字題最有效的方法。剩下20%的教師則是認為,應先教學生故事題, 其教學信念明顯偏向非符號優先與非示純解題法的教學觀。三、進一步比較教師布題順序及代數教學信念與學生解題表現間的一致性,結果發現,教師無法完全準確地預測學生的答題表現。更有甚者,教學信念偏向非符號優先與非清楚示範解題法的教師,預測學生的答題表現最不準確。

英文摘要

This paper presents three investigations related to algebra problems: (1) Taiwanese sixth graders' problem-solving performance on story problems, word-equation problems, and equation problems; (2) Taiwanese mathematics teachers' posing sequences towards these problems and their hidden teaching beliefs: and (3) the relationship between students' performance and teachers ' beliefs. These analyses revealed that sixth graders performed the best on equation problems and the worst on story problems. Further investigation indicated that although students performed better on equation problems, their algebraic thinking was still not well-developed. Second, about 80% mathematics teachers posed problems with the sequences of equation problems, word-equation problems, and story problems, respectively; they preferred the symbol-precedence view. They thought equation problems were easiest for students, and that word-equation problems should teach students how to directly find algebraic solutions and the procedures of algebraic operations. They also agreed that algebraic equations were the most effective way to solve story problems and word-equation problems. The remaining teachers, who expressed a non-symbol-precedence view, believed that story problems should be taught first. Third, the comparisons showed the inconsistency between students' performance and teachers' predictions, especially those teachers with a non-symbol-precedence belief made the worst predictions.

主题分类 社會科學 > 教育學
参考文献
  1. 教育部(2003)。九年一貫課程數學領域綱要。臺北市:作者。[Ministry of Education (2003). Grade 1-9 curriculum guidelines. Taipei, Taiwan: Author.]。
  2. Ball, D.(1988).Unlearning to teach mathematics.For the learning of Mathematics,8,40-48.
  3. Booth, L. R.(1984).Algebra: Children's strategies and errors.Windsor, UK:NFER-Nelson.
  4. Borko, H.,Eisenhart, M.,Brown, C. A.,Underhill, R. G.,Jones, D.,Agard, P. C.(1992).Learning to teach hard mathematics: Do novice teachers and their instructors give up too easily?.Journal for Research in Mathematics Education,23,194-222.
  5. Grouws, D. A.(Ed.)(1992).Handbook of research on mathematics teaching and learning.New York:Macmillan.
  6. Grouws, D.(Ed.)(1992).Handbook of research on mathematics teaching and learning.New York:Macmillan.
  7. Hoyles, C.(Ed.),Morgan, C.(Ed.),Woodhouse, G.(Ed.)(1999).Rethinking mathematics curriculum.London:Falmer Press.
  8. Koedinger, K. R.,Nathan, M. J.(2004).The real story behind story problems: Effects of representations on quantitative reasoning.The Journal of The Learning Science,13(2),129-164.
  9. Lanvier, C.(Ed.)(1987).Problems of presentation in the teaching and learning of mathematics.Hillsdale, NJ:Lawrence Erlbaum.
  10. Lester, F. K.(Ed.)(2007).Second handbook of research on mathematics teaching and learning.Charlottee, NC:Information Age.
  11. Lin, F. L.,Yang, K. L.(2005).Distinctive characteristics of mathematical thinking in non-modelling friendly environment.Teaching Mathematics and its Application,24(2-3),97-106.
  12. Mayer, R. F.(1992).Thinking, problem solving, cognition.New York:W. H. Freeman and Company.
  13. Mullis, I. V. S.,Martin, M. O.,Foy, P.(2008).,Chestnut Hill, MA:TIMSS & PIRLS International Study Center, Boston College.
  14. Nathan, M. I.,Koedinger, K. R.(2000).An investigation of teachers' beliefs of students' algebra development.Cognition and Instruction,18(2),209-237.
  15. Nathan, M. J.,Koedinger, K. R.(2000).Teacher's and researcher's beliefs about the development of algebraic reasoning.Journal for Research in Mathematics Education,31(2),168-190.
  16. Nathan, M. J.,Petrosino, A.(2003).Expert blind spot among preservice teachers.American Educational Research Journal,40(4),905-933.
  17. National Council of Teachers of Mathematics=NCTM(1989).Curriculum and evaluation standards for school mathematics.Reston, VA:Author.
  18. NCTM(2000).Principles and standards for school mathematics.Reston, VA:Author.
  19. Organisation for Economic Co-operation and Development=OECD(2004).Learning for tomorrow's world-First results from PISA 2003.Paris:Author.
  20. Piaget, J.,Inhelder, B.(1967).The child's conception of space.New York:The Norton Library.
  21. Raymond, M. A.(1997).Inconsistency between a beginning elementary school teacher's mathematics beliefs and teaching.Journal for Research in Mathematics Education,28(5),577-601.
  22. Resnick, L. B.,Nesher, P.,Leonard, F.,Magonc, M.,Omanson, S.,Peled, I.(1989).Conceptual bases of arithmetic errors: The case of decimal fractions.Journal for Research in Mathematics Education,20(1),8-27.
  23. Sfard, A.(1991).On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin.Educational Studies in Mathematics,22,1-36.
  24. Sfard, A.,Linchevski, L.(1994).The gains and the pitfalls of reification-The case of algebra.Educational Studies in Mathematics,26,191-228.
  25. Shroyer, J.(1978).Critical moments in the teaching of mathematics.The annual meeting of the American Educational Research Association,Toronto, Canada:
  26. Shulman, L. S.(1986).Those who understand: Knowledge growth in teaching.Educational Researcher,15(2),4-14.
  27. Sikula, J.(Ed.)(1996).Handbook of research on teacher education.New York:Simon & Schuster.
  28. Simon, M.(1995).Reconstructing mathematics pedagogy from a constructivist perspective.Journal for Research in Mathematics Education,26(2),114-145.
  29. Sternberg, R. J.(1994).Thinking and problem solving.New York:Academic Press.
  30. Sternberg, R. J.(2003).Cognitive psychology.Belmont, CA:Wadsworth/Thomson Learning.
  31. Strauss, A.,Corbin, J.(1998).Basics of qualitative research: Techniques and procedures for developing grounded theorey.Thousand Oaks, CA:Sage.
  32. Swafford, J. O.,Jones, G. A.,Thornton, C. A.(1997).Increased knowledge in geometry and instructional practice.Journal for Research in Mathematics Education,28(4),467-483.
  33. Thompson, A.(1984).The relationship of teachers' conceptions of mathematics and mathematics teaching to instructional practice.Educational Studies in Mathematics,15,105-127.
  34. Thompson, A.,Thompson, P. W.(1996).Talking about rates conceptually, part II: Mathematical knoweldge for teaching.Journal for Research in Mathematics Education,27(1),2-24.
  35. Thompson, P. W.(1993).Quantitative reasoning, complexity, and additive structures.Educational Studies in Mathematics,25,165-208.
  36. van Amerom, B. A.(2003).Focusing on informal strategies when linking arithmetic to early algebra.Educational Studies in Mathematics,54,63-75.
  37. van Dooren, W.,Verschaffel, L.,Onghena, P.(2002).Impact of preservice teachers' content knowledge on their evaluation of students' strategies for solving arithmetic and algebra word problems.Journal for Research in Mathematics Education,33(5),319-351.
  38. Wagner, S.(Ed.),Kieran, C.(Ed.)(1989).Research issues in the learning and teaching of algebra.Reston, VA:NCTM.
  39. Wittrock, M. C.(Ed.)(1986).Handbook of research on teaching.New York:Macmillan.
  40. 方吉正(1998)。教師信念研究之回顧與整合─六種研究取向。教育資料與研究,20,36-44。
  41. 林宏仁(2003)。屏東縣=PingTung, Taiwan,國立屏東教育大學=National Pingtung University of Education。
  42. 林業泰(2004)。臺北市=Taipei, Taiwan,國立臺北教育大學=National Taipei University of Education。
  43. 邱皓政(2002)。量化研究與統計分析─SPSS中文視窗版資料分析範例解析。臺北市=Taipei, Taiwan:五南=Wu-Nan。
  44. 黃幸美(2000)。教師的數學教學知識與其對兒童數學知識認知之探討。教育與心理研究季刊,23(1),73-98。
  45. 黃明瑩(2000)。臺北市=Taipei, Taiwan,國立臺灣師範大學=National Taiwan Normanl University。
  46. 黃淑華(2002)。臺北市=Taipei, Taiwan,國立臺灣師範大學=National Taiwan Normanl University。
  47. 謝佳叡(2001)。臺北市=Taipei, Taiwan,國立臺灣師範大學=National Taiwan Normanl University。
被引用次数
  1. (2017)。科技化學習模組對於國小數學歸納課程之應用效益探究。教育研究學報,51(1),43-70。
  2. (2019)。由認知負荷觀點探討國中代數試題難度。教育研究學報,53(1),45-70。