题名

校務研究資料庫的建構與分析應用

并列篇名

DEVELOPMENT AND APPLICATION OF DATABASES FOR INSTITUTIONAL RESEARCH AND ANALYSIS

DOI

10.6151/CERQ.2016.2401.04

作者

曾元顯(Yuen-Hsien Tseng)

关键词

資料一致性 ; 資料正規化 ; 資料素養 ; 資料倉儲 ; 視覺化分析 ; data consistency ; data normalization ; data literacy ; data warehouse ; visualization analysis

期刊名称

當代教育研究季刊

卷期/出版年月

24卷1期(2016 / 03 / 01)

页次

107 - 134

内容语文

繁體中文

中文摘要

本文根據教育科學、圖書館學、資訊工程等領域的知識,結合多年來處理校內外資料庫的實務經驗,以及對近年技術產品的瞭解,闡述校務研究資料庫建置的較佳實施概念,並分析比較各種建置方案的適用時機與優缺點,最後以三項代表性的具體實例說明本文提及之實施概念的綜效。具體而言,本文介紹採、編、典、藏、用五項可持久運作的資料庫建構作業流程與注意事項,說明資料正規化與反正規化的用處,透過概念驗證作業提供與國內廠商互動的經驗,並以實際校務數據的分析案例,分享應用經驗。整體而言,資料蒐整作業(即:採、編、典、藏)仍是最費時、費力的流程,一旦完成,後續的分析運用便容易進行。目前的視覺化分析工具將越來越便利,讓各類型使用者得以更有效率的從大量資料中發現特殊樣態、形成假說,進而對資料做各種查詢與探索,以獲得具體事證支持決策。展望未來,除了視覺化工具越受依賴外,事件演進模擬技術,也將扮演重要角色,其可讓使用者事先知道各種因素變化後的最終結果,讓分析平台更具價值。

英文摘要

This article elaborates on the possible best practice of developing databases for institutional research and analysis, based on the knowledge of Educational Science, Library Science, and Information Engineering, years of experience in developing educational databases, and a recent survey of related technology and products. Several developing options are compared to show their benefits and disadvantages under different conditions. Three representative analysis tasks are reported to verify and show the synergy of the mentioned ideas and experience. In particular, this article proposes a sustainable workflow: (1) data collection and aggregation, (2) cataloguing, (3) regulation, (4) archiving, and (5) usage, and describes their must-known caveats. The application situations of data normalization and de-normalization are described. Capability of domestic vendors of related products is briefly mentioned based on a proof-of-concept testing. And finally, real-world institutional analyses are conducted to share our experience. Overall, the first four processes in the above workflow are most time-consuming and costly. Once data have been well prepared, recent visualization analysis tools allow users to easily discover meaningful patterns and inspire hypotheses, and allow them to explore the database to find evidence to support their hypotheses and decisions. In the future, we expect that event evolution simulation techniques, which allow users to foresee the results given various input scenarios, could play an important role in educational data analysis, in addition to the maturing data visualization tools.

主题分类 社會科學 > 教育學
参考文献
  1. 紀馥安、許清芳(2015)。運用開放軟體R 處理大型教育資料庫。當代教育研究季刊,23(4),121-153。
    連結:
  2. 曾元顯(2014)。自動化資訊組織與主題分析近二十年來的研究與發展。教育資料與圖書館學,51(5),3-26。
    連結:
  3. 羅孟彥(2013)。支援教育品質管理之整合式資訊系統建構與研究。教育科學研究期刊,58(4),69-101。
    連結:
  4. 詹文男、羅瑋君( 2001 ) 。高等資料庫報告- 資料倉儲。取自http://www.mgt.ncu.edu.tw/~ylchen/database/DataWarehousing.doc[Chan, W. N., & Lo, W. C. (2001). Advanced database report-Data warehousing.Retrieved from http://www.mgt.ncu.edu.tw/~ylchen/database/DataWarehousing.doc]
  5. Borthakur, D. (2007). The hadoop distributed file system: Architecture and design. Hadoop Project Website. Retrieved from https://svn.apache.org/repos/asf/hadoop/common/tags/release-0.16.4/docs/hdfs_design.pdf
  6. Jones, L. (2015). How to build a data warehouse [The Higher Education Data Warehousing Forum]. Retrieved from http://hedw.org/hedwpresentation/howtobuild-a-data-warehouse/
  7. 鍾沛原、曾賢寶、楊嘉麗、李柏毅、蔡一郎(2014)。電腦機房異地備援機制參考指引。取自http://download.icst.org.tw/attachfilecomm/我國電腦機房異地備援機制參考指引.pdf[Chung, P. Y., Tseng, H. B., Yang, J. L., Lee, B. Y., & Tsai, Y. L. (2014). Reference guide to remote backup for computer & data center. Retrieved from http://download.icst.org.tw/attachfilecomm/%E6%88%91%E5%9C%8B%E9%9B%BB%E8%85%A6%E6%A9%9F%E6%88%BF%E7%95%B0%E5%9C%B0%E5%82%99%E6%8F%B4%E6%A9%9F%E5%88%B6%E5%8F%83%E8%80%83%E6%8C%87%E5%BC%95.pdf]
  8. 李欣宜(2015 年2 月17 日)。美國Top 4 技術長寶立明:大數據即將在五年內消失。數位時代。取自http://www.bnext.com.tw/。[Li, X. Y. (2015, February 17). United States top 4 chief technology officer Stephen Brobst: Big data is about to disappear within five years. Business Next. Retrieved from http://www.bnext.com.tw/]
  9. Data Quality Campaign. (2014). Teacher data literacy: It's about time-A brief for state policymakers. Retrieved from http://dataqualitycampaign.org/wp-content/uploads/2015/06/DQC-Data-Literacy-Brief.pdf
  10. Bahr, P. R.(2009).Educational attainment as process: Using hierarchical discrete-time event history analysis to model rate of progress.Research in Higher Education,50(7),691-714.
  11. Codd, E. F.(1970).A relational model of data for large shared data banks.Communications of the ACM,13(6),377-387.
  12. Dey, E. L.(1997).Working with low survey response rates: The efficacy of weighting adjustments.Research in Higher Education,38(2),215-227.
  13. Diem, A.,Wolter, S. C.(2013).The use of bibliometrics to measure research performance in education sciences.Research in Higher Education,54(1),86-114.
  14. Enslein, K.(Ed.),Ralston, A.(Ed.),Wilf, H. S.(Ed.)(1997).Statistical methods for digital computers.New York, NY:Wiley.
  15. Feldman, R.,Sanger, J.(2006).The text mining handbook: Advanced approaches in analyzing unstructured data.Cambridge, England:Cambridge University Press.
  16. Fellegi, I. P.,Sunter, A. B.(1969).A theory for record linkage.Journal of the American Statistical Association,64(328),1183-1210.
  17. Ghemawat, S.,Gobioff, H.,Leung, S.-T.(2003).The Google file system.ACM SIGOPS Operating Systems Review,37(5),29-43.
  18. Graf, S.,Kinshuk,Liu, T.-C.(2009).Supporting teachers in identifying students' learning styles in learning management systems: An automatic student modelling approach modelling approach.Educational Technology & Society,12(4),3-14.
  19. Han, J.,Kamber, M.,Pei, J.(2011).Data mining: Concepts and techniques.Burlington, MA:Morgan Kaufmann.
  20. Henschen, D.(2014).16 top big data analytics platforms.InformationWeek
  21. Hossler, D.,Kuh, G.,Olsen, D.(2001).Finding fruit on the vines: Using higher education research and institutional research to guide institutional policies and strategies.Research in Higher Education,42(3),211-221.
  22. Howard, R. D.(Ed.),McLaughlin, G. W.(Ed.),Knight, W. E.(Ed.)(2012).The handbook of institutional research.Hoboken, NJ:John Wiley & Sons.
  23. Inmon, W. H.(1992).Building the data warehouse.Hoboken, NJ:John Wiley & Sons.
  24. Jin, L.,Li, C.,Mehrotra, S.(2003).Efficient record linkage in large data sets.Proceedings of the Eighth International Conference on Database Systems for Advanced Applications,137-146.
  25. Kuhn, D.(Ed.)(2013).Pro oracle database 12c administration.New York, NY:Apress.
  26. Larose, D. T.(2014).Discovering knowledge in data: An introduction to data mining.Hoboken, NJ:Wiley.
  27. Law, A. M.,Kelton, W. D.(2000).Simulation modeling and analysis.New York, NY:McGraw Hill.
  28. Müller, H.,Freytag, J.-C.(2003).Problems, methods and challenges in comprehensive data cleansing.
  29. Narayan, R.(1988).Data dictionary: Implementation, use, and maintenance.Upper Saddle River, NJ:Prentice-Hall.
  30. Nonaka, I.(1994).A dynamic theory of organizational knowledge creation.Organization Science,5(1),14-37.
  31. Plaisant, C.(2004).The challenge of information visualization evaluation.Proceedings of the Working Conference on Advanced Visual Interfaces
  32. Rice, J. A.(2006).Mathematical statistics and data analysis.Boston, MA:Duxbury Press.
  33. Rios-Aguilar, C.(2015).Using big (and critical) data to unmask inequities in community colleges.New Directions for Institutional Research,163,43-57.
  34. Schoenecker, C.(2010).The benefits of a comprehensive, integrated, and granular data system for community and technical college institutional research.New Directions for Institutional Research,147,81-108.
  35. Small, H. G.,Koenig, M. E. D.(1977).Journal clustering using a bibliographic coupling method.Information Processing & Management,13(5),277-288.
  36. Tillett, B. B.(2004).Authority control: State of the art and new perspectives.Cataloging & Classification Quarterly,38(3-4),23-41.
  37. Tseng, Y.-H.,Lin, C.-J.,Lin, Y.-I.(2007).Text mining techniques for patent analysis.Information Processing & Management,43(5),1216-1247.
  38. Tseng, Y.-H.,Tsay, M.-Y.(2013).Journal clustering of Library and Information Science for subfield delineation using the bibliometric analysis toolkit: CATAR.Scientometrics,95(2),503-528.
  39. Ware, C.(2012).Information visualization: Perception for design.Burlington, MA:Morgan Kaufmann.
  40. Zhang, H.,Wang, Y.,Han, J.(2011).Middleware design for integrating relational database and NOSQL based on data dictionary.Proceedings of the International Conference on Transportation, Mechanical, and Electrical Engineering
  41. 彭森明(2013)。高等教育校務研究的理念與應用。臺北市=Taipei, Taiwan:高等教育=Higher Education。
  42. 彭森明(2010)。大學生學習成果評量:理論、實務與應用。臺北市=Taipei, Taiwan:高等教育=Higher Education。
被引用次数
  1. 蔡金田,楊金君,沈秋宏(2023)。應用R語言文字探勘技術進行教育研究之探究。學校行政,143,120-150。
  2. 賴怡樺、鄭元齊、陳敦源(2019)。大學行政服務躍升的機會與挑戰:以服務品質管理機制為例之研究。國家與社會,21,169-214。
  3. 劉峰旗、彭耀平、段盛華(2017)。校務研究資料建置與決策支援應用。教育科學研究期刊,62(4),27-51。
  4. 蕭佳賓,洪錦珠,李育齊(2019)。美國學生學習歷程縱貫性大數據系統P-20W的啟示與借鏡。當代教育研究季刊,27(3),1-33。
  5. 徐明珠(2020)。以大數據分析探討大學網站使用態樣。中華印刷科技年報,2020,331-338。
  6. (2017)。大學生學習成效與國際競賽得獎關係之探討。教育研究月刊,280,46-61。
  7. (2018).A literature review on the student evaluation of teaching An examination of the search, experience, and credence qualities of SET.高教評鑑與發展,12(2),17-38.
  8. (2019)。大學生網路社群平臺巨量資料探勘之應用。教育與心理研究,42(3),79-109。
  9. (2019)。大學推動校務研究之個案探析。高等教育,14(2),1-36。
  10. (2019)。高等教育資料跨域整合與應用之倡議。高等教育,14(1),1-39。
  11. (2024)。臺灣大專校院輔導與諮商工作之挑戰與展望。中華輔導與諮商學報,69,1-36。