题名

顧客流失分析模式之個案研究-以臺灣H健康休閒俱樂部為例

并列篇名

A Case Study of Customer Churn Mod-An Example of H Health Club in Taiwan

DOI

10.6547/tassm.2007.0007

作者

陳麒文(Chi-Wen Chen)

关键词

資料採礦 ; 顧客流失 ; 鑑別分析 ; 羅吉斯迴歸 ; 人工類神經網路 ; 多元適應性雲形迴歸 ; Data Mining ; Customer Churn ; Discriminant Analysis ; Logistic Regression ; Artificial Neural Networks ; Multivariate Adaptive Regression Splines

期刊名称

臺灣體育運動管理學報

卷期/出版年月

5期(2007 / 09 / 01)

页次

124 - 149

内容语文

繁體中文

中文摘要

本研究之主要目的包括瞭解臺灣某家健康休閒俱樂部(以下均以H club稱之)之顧客組成結構、利用資料採礦分類技術(鑑別分析、羅吉斯迴歸、人工類神經網路、多元適應性雲形迴歸)來建立H club之顧客流失分析模式、與經由顧客流失分析模式來瞭解流失顧客之重要特徵。本研究利用H club所提供的資料來進行實證研究,共計1,287筆,在剔除資料不全與資料內容不合理的資料後,共有1,152筆。本研究之結果如下: 一、H club之顧客組成結構以女性會員(61.72%)佔大多數、平均年齡為38.16歲且多集中在25歲~45歲(69.03%)、平均會齡為2.63年且多集中在二年以下(52.86%)、入會金額以0元為最多(50.52%)、月費金額以2,500元為最多(36.37%)、居住地區則以臺北市居多(81.68%)、付款方式則多為現金(59.46%)。 二、本研究所提出之顧客流失分析模式之建構程序,主要的目的是希望透過四種不同分類方法的比較,來求得一個最佳的區別模式。此外,為驗證所提模式之有效性,本研究利用H club所提供的資料來進行實證研究,結果顯示,多元適應性雲形迴歸的整體分類績效為86.52%,具有極佳之分類效果,是一項 值得建議使用的工具。 三、總體而言,以整體正確判別率為最高之多元適應性雲形迴歸所建構之顧客流失分析模式,其流失顧客之特徵為年齡介於30~35歲、會齡為一年以下、月繳2, 500元的月費、且以現金支付費用的會員。

英文摘要

The main purpose of this study was to understand the customer structure in a certain Taiwanese health club (the following substituted as H club) and to establish its customer churn model through data mining classification technology (discriminant analysis, logistic regression, artificial neural networks, multivariate adaptive regression splines) as well as to realize the significant characteristics of churn customer through the customer churn model. The data used was provided by H club to perform the empirical research, and the original data were 1,287 records. After eliminating the incomplete data and the unreasonable data, there were 1, 152 records totally. The results were as followed: 1. In the customer structure of H club, the majority of gender was female member taken 61.72 percent of total. While the average age was 38.16-year-old, the range of age was from 25-year-old to 45-year-old taken 69.03 percent. The duration time of membership was 2.63-year in average and most centralized in two-year-below (52.86%). The initiation fee was 0 New Taiwanese dollar taken the major part of total (50.52%). Otherwise, the monthly fee was 2,500 New Taiwanese dollars in majority (36.37%). With the residential area, the most members were living in Taipei city (81.68%). Finally, the method of payment was in cash (59.46%). 2. The constructional process of churn model in this study was by way of four classification methods to obtain the one best discriminating mode. Besides, in order to verify the effectivity of the discriminating mode, this study used the data provided by H club to perform the empirical research. The result found that wholecorrect classification rate was 86.52% in the churn model using the multivariate adaptive regression splines, which had the best utility and been suggested as a worth tool to use. 3. By all accounts, the characteristics of churn customer through the customer churn model using the best way of multivariate adaptive regression were the members of the age between 30-year-old and 35-year-old, the duration time of membership of one-year-below, the monthly fee of 2,500 New Taiwanese dollars, and the method of payment of cash.

主题分类 社會科學 > 體育學
社會科學 > 管理學
参考文献
  1. Berry, M. J. A.,Linoff, G. S.(1997).Data mining techniques: For marketing, sales, and customer support.New York:Wiley Computer.
  2. Berson, A.,Smith, S.,Thearling, K.(2000).Building data mining applications for CRM.New York:McGraw-Hill.
  3. Browne, M. J.,Hoyt, R. E.(1995).Economic and market predictors of insolvencies in the property-liability insurance industry.Journal of Risk and Insurance,62,309-327.
  4. Cabena, P.,Hadjinaian, P.,Stadler, R.,Verhees, J.,Zanasi, A.(1997).Discovering data mining from concept to implementation.New Jersey:Prentice Hall PTR.
  5. Cios, K.,Pedrycz W.,Swiniarski R.(1998).Data mining methods for knowledge discovery.Boston:Kluwer Academic.
  6. Cooper, D. R.,Emory, C. W.(1998).Business research method.Chicago:Irwin.
  7. Dahya, J.,Lonie, A. A.,Power, D. M.(1998).Ownership structure, firm performance and top executive change: an analysis of UK firms.Journal of Business Finance & Accounting,25,1089-1118.
  8. Desai, V. S.,Crook, J. N.,Overstreet, G. A.(1996).A comparison of neural networks and linear scoring models in the credit union environment.European Journal of Operational Research,95,24-37.
  9. Efron, B.(1975).The efficiency of logistic regression compared to normal discriminant function analysis.Journal of the American Statistical Association,70,892-898.
  10. Fayyad, U. M.,Piatetsky-Shapiro, G.,Smyth, P.(1996).From data mining to knowledge discovery in databases.AI Mag,17,37-54.
  11. Fish, K. E.,Barnes, J. H.,Aiken, M. W.(1995).Artificial neural networks: A new methodology for industrial market segmentation.Industrial Marketing Management,24,431-438.
  12. Fisher, R. A.(1936).The Use of Multiple Measurements in Taxonomic Problems.Annals of Eugenics,7,179-188.
  13. Freeman, J. A.,Skapura, D. M.(1992).Neural networks algorithms, applications, and programming techniques.MA:Addison-Wesley Publishing Company.
  14. Friedman, J. H.(1990).Multivariate Adaptive Regression Splines.Technical Report,102
  15. Friedman, J. H.(1991).Multivariate adaptive regression splines.The Annals of Statistics,19(1),1-14.
  16. Friedman, J. H.(1988).Multivariate Adaptive Regression Splines.Technical Report,102
  17. Griffin, W. L.,Fisher, N. I.,Friedman, J. H.,Ryan, C. G.(1997).Statistical Techniques for the Classification of Chromites in Diamond Exploration Samples.Journal of Geochemical Exploration,59,233-249.
  18. Guape, F. H.,Owrang, M. M.(1995).Database mining discovering new knowledge and cooperative advantage.Information Systems Management,12,26-31.
  19. Hosmer, D. W.,Lemeshow, S.(1989).Applied logistic regression.New York:John Wiley & Sons.
  20. Hwang, D. Y.,Lee, C. F.,Liaw K. T.(1997).Forecasting bank failures and deposit insurance premium.International Review of Economics and Finance,6(3),317-334.
  21. Johnson, R. A.,Wichern, D. W.(1998).Applied multivariate staristical analysis.NJ:Prentice-Hall Inc.
  22. Khirallah, K.(1999).Should retail banks race toward the one-to-one future?.Bank Technology News,12(4),41-43.
  23. Kim, J. C.,Kim, D. H.,Kim, J. J.,Ye, J. S.,Lee, H. S.(2000).Segmenting the Korean housing market using multiple discriminant analysis.Construction Management and Economics,18,45-54.
  24. Lee, H.,Jo, H.,Han, I.(1997).Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis.Expert Systems With Applications,13,97-108.
  25. Matheus, C. J.,Chan, P. K.,Piatetsky-Shapiro, G.(1993).Systems for knowledge discovery in databases.IEEE trans. On Knowledge Discovery and Data Engineering,5(6),903-913.
  26. Newell, F.(2000).Loyalty.com: Customer relationship management in the new era of internet marketing.New York:McGraw-Hill.
  27. Odum, E. P.(1971).Fundamental of ecology.Phidadelphia:W.B. Saunders Co.
  28. Peppers, D.,Rogers, M.(1993).The future of one to one: Building business relationships one customer at a time.New York:Currency Doubleday.
  29. Piatetsky-Shapiro, G.(1993).An overview of knowledge discovery in database: Recent progress and challenges.Rough Sets, Fuzzy Sets and Knowledge Discovery-Proceedings of the International Workshop on Rough Sets and Knowledge Discovery,93,1-10.
  30. Salford System(2000).MARS V2.0-for windows 95/98/NT.San Diego, CA:Salford System.
  31. Smarajit, B.(1996).Classification Using Splines.Computational Statistics and Data Analysis,22,505-525.
  32. Stotlar, D. K.(1999)。1999健康體能與有氧運動大會。臺北:行政院體育委員會。
  33. Sung, T. K.,Chang, N.,Lee, G.(1999).Dynamics of modeling in data mining: interpretive approach to bankruptcy prediction.Journal of Management Information Systems,16,63-85.
  34. MIT Technology Review, 2001 January/February
  35. Trevino, L. J.,Daniels, J. D.(1995).FDI theory and foreign direct investment in the United States: a comparison of investors and non-investors.International Business Review,4,177-194.
  36. Vellido, A.,Lisboa, P. J. G.,Vaughan, J.(1999).Neural networks in business: A survey of applications (1992-1998).Expert Systems With Applications,17,51-70.
  37. Vesta Services(1998).Qnet97-neural network modeling for windows 95/98/NT.Winnetka, IL:Vesta Services, Inc.
  38. Walters, S.(1974).Customer service: A how-to-do-it manual for librarians.New York:Neal-Schuman.
  39. Werbos, P. J.(1974).Harvard University, MA.
  40. Zhang, G.,Patuwo, B. E.,Hu, M. Y.(1998).Forecasting with artificial neural networks: The state of the art.International Journal of Forecasting,14,35-62.
  41. 王信勝(2001)。輔仁大學資訊管理學系碩士班。
  42. 江世傑(2001)。國立成功大學工業管理學系碩士班。
  43. 吳國禎(2000)。中原大學醫學工程學系碩士班。
  44. 呂奇傑(2001)。輔仁大學應用統計學研究所。
  45. 周慶華(2001)。輔仁大學金融研究所。
  46. 邱志洲、李天行、周宇超、呂奇傑(2002)。整合鑑別分析與類神經網路在資料探勘上之應用。工業工程學刊,19(2),9-22。
  47. 施致平(1999)。從邏輯斯諦迴歸(Logistic Regression)論運動參與之預測。體育學報,27,21-30。
  48. 夏載(2001)。剖析資料採礦在顧客關係管理中的應用。電子化企業經理人報告eBusiness Executive Report,20,71-75。
  49. 張政一(2001)。中國文化大學國際企業管理研究所。
  50. 許峻源(2001)。輔仁大學應用統計研究所。
  51. 陳麒文、陳鴻雁(2001)。Data Mining於運動行銷上之應用。「2001年體育科技與資訊」研討會,臺北:
  52. 彭慧雯(2001)。國立臺北科技大學生產系統工程與管理研究所。
  53. 黃雅蘭(2001)。國立臺灣科技大學資訊管理系碩士班。
  54. 葉怡成(1992)。類神經網路模式應用與實作。臺北:儒林書局。
  55. 劉嘉鴻(2001)。輔仁大學金融研究所。
  56. 數博網(2001)。歹年冬資料採礦度小月。動腦雜誌,304,44-46。
  57. 蔡裕春(2001)。輔仁大學應用統計學研究所。
  58. 魯振華(2001)。逢甲大學保險學系碩士班。
  59. 賴欣儀(2000)。國立中山大學企業管理學系研究所。
  60. 謝邦昌(2001)。資料採礦入門及應用-從統計技術看資料採礦。臺北:資商訊息顧問股份有限公司。
  61. 羅家德(2001)。網際網路關係行銷。臺北:聯經出版社。
  62. 蘇文娟(2000)。國立東華大學國際經濟研究所。
  63. 龔昶元(1998)。Logistic Regression模式應用於信用卡信用風險審核之研究-以國內某銀行信用卡中心爲例。臺北銀行月刊,28(9),35-49。
被引用次数
  1. 鄔欣佑(2016)。建構電影票房與口碑分類模式。淡江大學管理科學學系碩士班學位論文。2016。1-61。