题名

使用Probit模型估計主場球隊獲勝機率:以美國職業籃球聯盟(NBA)為例

并列篇名

Estimation of the Probability of Winning for NBA Home Court Teams: A Probit Model Approach

DOI

10.6547/tassm.202206_22(1).0004

作者

蕭秋銘(Chiu-Ming Hsiao);張恆崑(Hung-Kun Zhang);陳冠穎(Guan-Ying Chen);張庭翰(Ting-Han Chung)

关键词

運動經濟 ; Probit模型 ; 勝敗比 ; 運動數學 ; sports economics ; probit model ; odds ratio ; Mathletics

期刊名称

臺灣體育運動管理學報

卷期/出版年月

22卷1期(2022 / 06 / 01)

页次

73 - 95

内容语文

繁體中文

中文摘要

目的:本文之目的為研究美國職業籃球聯盟的主場球隊獲勝的影響因子,並透過這些因子所建立一預測模型,藉以推算出主場球隊獲勝之機率。方法:透過NBA的官方網站蒐集到2019-20賽季的2,199場例行賽的團隊攻守數據,運用Probit模型估算主場球隊獲勝機率。結果:對於2019-20賽季,對主場球隊贏球的狀態,最高可有81.59%的命中率,整體精準度也有74.49%左右。再者,本文亦運用2020-21賽季的1,080場例行賽資訊,進行預測下一場例行賽的結果。此其時,對於主場球隊贏球機率的預測,約可達80.17%的命中率,且整體而言,亦可高達約71.14%左右的精準度。結論:本文為首度採用團隊數據來估算NBA球隊贏球機率之研究,發現贏球機率與團隊績效有顯著的正向關係,然而,其卻與攻守節奏沒有顯著的關係。再者,本文所提出之預測模型,可有效的估計出球賽的結果,以協助投資人投資決策。

英文摘要

Purpose: This study investigates the factors that influence the probability of NBA home teams winning and establishes a predictive model based on these factors. Method: In this study, the box score data of 2,199 regular games in the 2019-2020 season are collected through the official NBA website, and probit models are used to estimate the probability of the home team winning. Results: For the 2019-2020 season, the highest accuracy is 81.59%, and the overall accuracy is approximately 74.49%. In addition, this study uses information regarding 1,080 regular games in the 2020-2021 season to predict the results of the next regular games. The prediction accuracy of the next game for the home team winning is approximately 80.17%, and the overall precision is approximately 71.14%. Conclusion: This study is the first one to use team performance data in estimating the results of NBA games; a significant positive relationship with team performance is observed. However, the offensive and defensive tempo are not sufficiently significant to estimate the probability of winning.

主题分类 社會科學 > 體育學
社會科學 > 管理學
参考文献
  1. 江支璋(2012)。美國職籃 NBA 球隊主場優勢之分析。明新學報,38(1),55-65。
    連結:
  2. 宋威穎,雷文谷,熊婉君(2008)。美國職棒大聯盟主場優勢之分析。休閒暨觀光產業研究,3(2),47-60。
    連結:
  3. 東方介德,李雲光(2004)。男子籃球比賽攻守技術發展之探討。大專體育,70,143-148。
    連結:
  4. 陳順義,張又文(2008)。中華女籃攻守表現影響因子之探討。大專體育學刊,10(2),83-92。
    連結:
  5. 楊育寧,陳錦偉,陳金聲(2012)。2005-2010 年 NCAA 男子籃球決賽隊伍攻守紀錄之研究。運動研究,21(1),1-14。
    連結:
  6. 鄭智仁(2006)。高中女子籃球聯賽攻守技術分析及影響比賽勝負因素之研究。大專體育學刊,8(2),121-131。
    連結:
  7. 蕭秋銘,吳重佑,高菀庭,廖彩雯,陳家和,陳崑銘(2021)。球團老闆是冤大頭嗎﹖球員合約價值的決定因子─以美國職籃 (NBA) 為例。臺灣體育運動管理學報,21(2),179-213。
    連結:
  8. Bray, S. R.(1999).The home advantage from an individual team perspective.Journal of Applied Sport Psychology,11(1),116-125.
  9. Broughton, D.,Lee, J.,Nethery, R.(1999).Sports business at the end of the millennium: The answer: $213 billion.Street & Smith’s Sport Business Journal,2(35),23-29.
  10. Brown, B.(2019).University of New Hampshire.
  11. Bryson, A.,Frick, B.,Simmons, R.(2015).Sports economics: It may be fun but what’s the point?.National Institute Economic Review,232(1),R1-R3.
  12. Carron, A. V.,Loughhead, T. M.,Bray, S. R.(2005).The home advantage in sport competitions: Courneya and Carron’s (1992) conceptual framework a decade later.Journal of Sports Sciences,23(4),395-407.
  13. Clark, T. K.,Johnson, A.,Stimpson, A.(2013).Going for three: Predicting the likelihood of field goal success with logistic regression.2013 Annual MIT Sloan Sports Analytics Conference,Boston, MA:
  14. Courneya, K. S.,Carron, A. V.(1990).Batting first versus last: Implications for the home advantage.Journal of Sport and Exercise Psychology,12(3),312-316.
  15. Courneya, K. S.,Carron, A. V.(1992).The home advantage in sport competitions: A literature review.Journal of Sport and Exercise Psychology,14(1),13-27.
  16. European Commission(2007).White paper on sports.Brussels, Belgium:European Commission.
  17. Forsyth, J.,Wilde, A.(2014).,Brigham Young University, Department of Computer Science.
  18. Hsiao, C. M.(2022).Effects on second waves of COVID-19 epidemics: social stringency, economic forces and public health.Theoretical Economics Letters,12(1),287-320.
  19. KPMG Sports Advisory Practice (2018). Football clubs’ valuation: The European Elite 2018. From KPMG International Cooperative, Web site: https://www.footballbenchmark.com/documents/files/public/KPMG%20Football%20Clubs%20Valuation%20The%20European%20Elite%202018%20web.pdf.
  20. Kvam, P.,Sokol, J. S.(2006).A logistic regression/markov chain model for NCAA basketball.Naval Research Logistics,53(8),788-803.
  21. Levandoski, A.,Lobo, J.(2017).,University of Pittsburgh.
  22. Lopez, M. J.,Matthews, G. J.(2015).Building an NCAA men’s basketball predictive model and quantifying its success.Journal of Quantitative Analysis in Sports,11(1),5-12.
  23. Magel, R.,Unruh, S.(2013).Determining factors influencing the outcome of college basketball games.Open Journal of Statistics,3(4),225-230.
  24. Martin, D.(1977).Early warning of bank failure: A logit regression approach.Journal of Banking and Finance,1(3),249-276.
  25. McGuckin, T. A.,Sinclair, W. H.,Sealey, R. M.,Bowman, P. W.(2015).Players’ perceptions of home advantage in the Australian Rugby League competition.Perceptual and Motor Skills,121(3),666-674.
  26. Oliver, D.(2004).Basketball on paper: Rules and tools for performance analysis.Washington, D.C.:Potomac Books, Inc..
  27. Ruiz, F. J. R.,Perez-Cruz, F.(2015).A generative model for predicting outcomes in college basketball.Journal of Quantitative Analysis in Sports,11(1),39-52.
  28. Shanahan, K. J.(1984).University of Iowa.
  29. Shi, Z.,Moorthy, S.,Zimmermann, A.(2013).,Katholieke University Leuven.
  30. van Marle, H. J. F.,Hermans, E. J.,Qin, S. Z.,Fernández, G.(2009).From specificity to sensitivity: How acute stress affects amygdala processing of biologically salient stimuli.Biological Psychiatry,66(7),649-655.
  31. Willoughby, K. A.(2002).Winning games in Canadian football: A logistic regression analysis.The College Mathematics Journal,33(3),215-220.
  32. Winston, W. L.,Nestker, S.,Pelechrinis, K.(2022).Adjusted +/- player rating.Mathletics: How gamblers, managers, and Fans use mathematics in Sports,Princeton, NJ:
  33. Zhang, J. J.,Kim, E.,Mastromartino, B.,Qian, T. Y.,Nauright, J.(2018).The sport industry in growing economies: Critical issues and challenges.International Journal of Sports Marketing and Sponsorship,19(2),110-126.
  34. 井上雄彦(1990).灌籃高手.臺北市:尖端出版社.
  35. 李淑娟(2015).資料採礦運用—以SAS Enterprise Miner 為工具.臺北市:賽仕電腦軟體股份有限公司.
  36. 林房儹,林文郎,莊木貴,黃煜,張振崗,呂佳霙,王慶堂(2004)。行政院體育委員會委託研究報告行政院體育委員會委託研究報告,臺北市:行政院體育委員會。
  37. 林雅俐,林宜劭(2014)。美國籃球聯盟比賽勝負之關鍵因素採礦研究。觀光與休閒管理期刊,2,95-103。
  38. 教育部體育署 (2021) 。中華民國 110 年運動統計。教育部體育署,網址https://www.sa.gov.tw/Resource/Ebook/637710365422845355.pdf
  39. 臺灣趨勢研究股份有限公司 (2018) 。臺灣趨勢研究報告:運動服務業發展趨勢。2018年 5 月 20 日,取自臺灣趨勢研究股份有限公司,網址https://www.twtrend.com/download/0/94/。
  40. 謝倫立,王世安(1997)。籃球比賽進攻速度與進攻成功率的辯證關係。北京體育大學學報,20(2),41-90。