题名 |
縱剖面樣本有限條件下的面板協整檢驗 |
并列篇名 |
Testing for Panel Cointegration Where the Time Dimension is Finite |
DOI |
10.6704/JMSSD.2006.3.4.18 |
作者 |
王貴鵬(Gui-Peng Wang) |
关键词 |
面板資料 ; 面板協整 ; Mento Carlo模擬 ; Panel data ; Panel cointegration ; Mento Carlo simulation |
期刊名称 |
管理科學與統計決策 |
卷期/出版年月 |
3卷4期(2006 / 12 / 01) |
页次 |
18 - 24 |
内容语文 |
繁體中文 |
中文摘要 |
本文考察一種縱剖面時間序列樣本有限條件下的面板協整檢驗方法,檢驗的零假設是存在協整關係,這種方法可以看作是Hadri(2005)有關面板單位根結論的推廣。文章的結論表明這種檢驗的漸近分佈是正態的從而不受多餘參數的影響,同時,由於統計量的矩可以解析地表示,因此可以大大改進檢驗的小樣本性質。在縱剖面樣本T有限條件下構建的統計量也避免了對N和T施加的約束條件從而使得檢驗的適用性大大加強。最後,小樣本Mento Carlo類比表明此檢驗的實際水準(size)非常接近名義水準並且具有較高的勢(power)。 |
英文摘要 |
This paper presents a new test of panel cointegration to the case where the time dimension of the panel is finite. The null hypothesis of the test is that there exist cointegration relationship and this test can be seen as the expands of the panel unit root tests of Hadri(2005).The results of the paper show that the asymptotic distributions of the tests are normally distributed and free of Nuisance parameters. Moreover, the moments of the tests are derived analytically and can improve the finite sample size and power of the test. The derivation of the test under finite T make test suitable for more (N,T) combination. The Mento Carlo simulation results show that the empirical size of the test very close to the nomial level and the power of the test also relative high. |
主题分类 |
基礎與應用科學 >
統計 社會科學 > 管理學 |
参考文献 |
|