英文摘要
|
The purpose of this study is to apply four GARCH-type models to daily volatility forecasting to the Taiwanese stock index futures and Standard & Poor's Depository Receipts from 2001 to 2008. In stead of using squared returns as a proxy for true volatility, this study adopts absolute daily returns, PK-range, GK-range, RS-range, and realized volatility, for use in the empirical exercise. The volatility forecast evaluation is conducted with a variety of volatility proxies according to both symmetric and asymmetric types of loss functions. Empirical results show that the EGARCH model provides the most accurate daily volatility forecasts, while the GARCH model performs the worst in general. Such evidence suggests that asymmetry in volatility dynamics should be taken into account for forecasting financial markets volatility. Moreover, the latent volatility can be proxied using either absolute daily returns or daily price range with freely available prices.
|
参考文献
|
-
李命志、洪瑞成、劉洪鈞(2007)。厚尾GARCH模型之波動性預測能力比較。輔仁管理評論,14(2),47-72。
連結:
-
Andersen, T. G.,Bollerslev, T.(1998).Answering the skeptics: yes, standard volatility models do provide accurate forecasts.International Economic Review,39,885-905.
-
Bollerslev, T.,Wooldridge, J. M.(1992).Quasi-maximum likelihood estimation and inference in dynamic models with time varying covariances.Econometric Review,11,143-172.
-
Engle, R. F.(1982).Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation.Econometrica,50,987-1008.
-
Franses, P. H.,Dijk, D. V.(1996).Forecasting stock market volatility using (non-iinear) GARCH models.Journal of Forecasting,15,229-235.
-
Garman, M.,Klass, M.(1980).On the estimation of security price volatilities from historical data.Journal of Business,53,67-78.
-
Glosten, L.,Jagannathan, R.,Runkle, D.(1993).On the relation between the expected value and the volatility nominal excess return on stocks.Journal of Finance,46,1779-1801.
-
Heynen, R. C.,Kat, H. M.(1994).Volatility prediction: A comparison of the stochastic volatility, GARCH (1,1) and E GARCH (1,1) models.Journal of Derivatives,2,50-65.
-
Liu, H. C.,Lee, Y. H.,Lee, M. C.(2009).Forecasting china stock markets volatility via GARCH models under skewed-GED distribution.Journal of Money, Investment and Banking,7,5-15.
-
McMillan, D. G.,Speight, A. E. H.(2004).Daily volatility forecasts: Reassessing the performance of GARCH models.Journal of Forecasting,23,449-460.
-
McMillan, D. G.,Speight, A. E. H.,Apgwilym, O.(2000).Forecasting UK stock market volatility.Applied Financial Economics,10,435-448.
-
Nelson, D. B.(1991).Conditional heteroskedasticity in asset returns: A new approach.Econometrica,59,347-370.
-
Parkinson, M.(1980).The extreme value method for estimating the variance of the rate of return.Journal of Business,53,61-65.
-
Politis, D. N.(2004).A heavy-tailed distribution for arch residuals with application to volatility prediction.Annals of Economics and Finance,5,283-298.
-
Rogers, L. C. G.,Satchell, S. E.(1991).Estimating variance from high, low and closing prices.Annals of Applied Probability,1(4),504-512.
-
Sentena, E.(1995).Quadratic ARCH models.The Review of Economic Studies,62(4),639-661.
-
Theodossiou, P.(1998).Financial data and the skewed generalized t distribution.Management Science,44,1650-1661.
-
王豊文(2009)。淡江大學財務金融研究所。
-
吳佳貞(1998)。政治大學金融研究所。
-
呂文正(1998)。台灣大學經濟研究所。
-
林秀蓉(2007)。淡江大學財務金融研究所。
-
侯東平(2001)。台灣大學經濟研究所。
-
張瑞杰(2009)。淡江大學財務金融研究所。
-
陳煒朋(1998)。淡江大學財務金融研究所。
-
黃弘文(1997)。中興大學統計學研究所。
-
蔡麗茹、葉銀華(2000)。不對稱GARCH族模型預測能力之比較研究。輔仁管理評論,7(1),183-196。
-
鄭力維(2007)。暨南國際大學經濟研究所。
|