题名

以不同代理變數評估GARCH族模型之金融市場波動預測績效

并列篇名

Forecasting Daily Volatility in Financial Markets using GARCH-type Models under Alternative Proxy Measures

DOI

10.6736/JPSR.201003_7(1).0001

作者

劉洪鈞(Hung-Chun Liu);張高瑩(Kao-Ying Chang)

关键词

GARCH ; 已實現波動 ; 日變幅 ; 波動預測 ; GARCH ; Realized volatility ; Daily price range ; Volatility forecasts

期刊名称

績效與策略研究

卷期/出版年月

7卷1期(2010 / 03 / 01)

页次

1 - 16

内容语文

繁體中文

中文摘要

由於預測商品的波動越來越受到投資者的關切,本文擬利用GARCH、GJR-GARCH、QGARCH、EGARCH作為波動模型,以台股期貨及美國SPDR自2001年至2008年之日資料作為實證標的,進行GARCH族模型的波動性預測能力評估。本研究以絕對報酬率、PK變幅、GK變幅、RS變幅及已實現波動度(RV)作為市場真實波動性的代理變數,並同時採用對稱與不對稱損失函數評估模型的波動性預測績效。首先,實證結果指出在絕大多數的情況下,不對稱的波動模型較能解釋金融海嘯期間,金融市場的波動動態行為。其次,三種不對稱GARCH族模型的預測績效互有領先,不過在大部分的情況,皆以EGARCH模型最佳,GARCH模型表現最差。最後,以絕對報酬率或日變幅波動作為波動代理變數時,各模型的預測績效與已實現波動的實證結果呈現相當一致的現象。因此,在進行台灣股價指數期貨及美國SPDR指數型股票基金的波動性預測時,絕對報酬率及日變幅波動都是良好的波動替代變數。

英文摘要

The purpose of this study is to apply four GARCH-type models to daily volatility forecasting to the Taiwanese stock index futures and Standard & Poor's Depository Receipts from 2001 to 2008. In stead of using squared returns as a proxy for true volatility, this study adopts absolute daily returns, PK-range, GK-range, RS-range, and realized volatility, for use in the empirical exercise. The volatility forecast evaluation is conducted with a variety of volatility proxies according to both symmetric and asymmetric types of loss functions. Empirical results show that the EGARCH model provides the most accurate daily volatility forecasts, while the GARCH model performs the worst in general. Such evidence suggests that asymmetry in volatility dynamics should be taken into account for forecasting financial markets volatility. Moreover, the latent volatility can be proxied using either absolute daily returns or daily price range with freely available prices.

主题分类 社會科學 > 管理學
参考文献
  1. 李命志、洪瑞成、劉洪鈞(2007)。厚尾GARCH模型之波動性預測能力比較。輔仁管理評論,14(2),47-72。
    連結:
  2. Andersen, T. G.,Bollerslev, T.(1998).Answering the skeptics: yes, standard volatility models do provide accurate forecasts.International Economic Review,39,885-905.
  3. Bollerslev, T.,Wooldridge, J. M.(1992).Quasi-maximum likelihood estimation and inference in dynamic models with time varying covariances.Econometric Review,11,143-172.
  4. Engle, R. F.(1982).Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation.Econometrica,50,987-1008.
  5. Franses, P. H.,Dijk, D. V.(1996).Forecasting stock market volatility using (non-iinear) GARCH models.Journal of Forecasting,15,229-235.
  6. Garman, M.,Klass, M.(1980).On the estimation of security price volatilities from historical data.Journal of Business,53,67-78.
  7. Glosten, L.,Jagannathan, R.,Runkle, D.(1993).On the relation between the expected value and the volatility nominal excess return on stocks.Journal of Finance,46,1779-1801.
  8. Heynen, R. C.,Kat, H. M.(1994).Volatility prediction: A comparison of the stochastic volatility, GARCH (1,1) and E GARCH (1,1) models.Journal of Derivatives,2,50-65.
  9. Liu, H. C.,Lee, Y. H.,Lee, M. C.(2009).Forecasting china stock markets volatility via GARCH models under skewed-GED distribution.Journal of Money, Investment and Banking,7,5-15.
  10. McMillan, D. G.,Speight, A. E. H.(2004).Daily volatility forecasts: Reassessing the performance of GARCH models.Journal of Forecasting,23,449-460.
  11. McMillan, D. G.,Speight, A. E. H.,Apgwilym, O.(2000).Forecasting UK stock market volatility.Applied Financial Economics,10,435-448.
  12. Nelson, D. B.(1991).Conditional heteroskedasticity in asset returns: A new approach.Econometrica,59,347-370.
  13. Parkinson, M.(1980).The extreme value method for estimating the variance of the rate of return.Journal of Business,53,61-65.
  14. Politis, D. N.(2004).A heavy-tailed distribution for arch residuals with application to volatility prediction.Annals of Economics and Finance,5,283-298.
  15. Rogers, L. C. G.,Satchell, S. E.(1991).Estimating variance from high, low and closing prices.Annals of Applied Probability,1(4),504-512.
  16. Sentena, E.(1995).Quadratic ARCH models.The Review of Economic Studies,62(4),639-661.
  17. Theodossiou, P.(1998).Financial data and the skewed generalized t distribution.Management Science,44,1650-1661.
  18. 王豊文(2009)。淡江大學財務金融研究所。
  19. 吳佳貞(1998)。政治大學金融研究所。
  20. 呂文正(1998)。台灣大學經濟研究所。
  21. 林秀蓉(2007)。淡江大學財務金融研究所。
  22. 侯東平(2001)。台灣大學經濟研究所。
  23. 張瑞杰(2009)。淡江大學財務金融研究所。
  24. 陳煒朋(1998)。淡江大學財務金融研究所。
  25. 黃弘文(1997)。中興大學統計學研究所。
  26. 蔡麗茹、葉銀華(2000)。不對稱GARCH族模型預測能力之比較研究。輔仁管理評論,7(1),183-196。
  27. 鄭力維(2007)。暨南國際大學經濟研究所。
被引用次数
  1. 李彥賢(2012)。社會責任指數的波動性不對稱與冪級數模型之分析。會計與財金研究,5(1),61-74。