参考文献
|
-
Akgiray, A. K.(1989).Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts.Journal of Business,62,55-79.
-
Andersen, T. G.(2000).Some Reflections on Analysis of High-frequency Data.Journal of Business and Economic Statistics,18,146-153.
-
Andersen, T. G.,Bollerslev, T.(1997).Intraday Periodicity and Volatility Persistence in Financial Markets.Journal of Empirical Finance,4,115-158.
-
Andersen, T. G.,Bollerslev, T.(1998).Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts.International Economic Review,39(4),885-905.
-
Awartani, B. M. A.,Corradi, V.(2005).Predicting the Volatility of the S&P 500 Stock Index via GARCH Models: the Role of Asymmetries.International Journal of Forecasting,21,167-183.
-
Balaban, E.(2004).Comparative Forecasting Performance of Symmetric and Asymmetric Conditional Volatility Models of an Exchange Rate.Economics Letters,83,99-105.
-
Blair, B. J.,Ser-Hung, P.,Taylor, S. J.(2001).Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High-frequency Index Returns.Journal of Econometrics,105,5-26.
-
Brailsford, T. J.,Faff, R. W.(1996).An Evaluation of Volatility Forecasting Techniques.Journal of Banking and Finance,20,419-438.
-
Cao, Q.,Leggio, K. B.,Schniederjans, M. J.(2005).A Comparison between Fama and French's Model and Artificial Neural Networks in predicting the Chinese Stock Market.Computers & Operations Research,32,2499-2512.
-
Chen, A. S.,Leung, M. T.,Daouk, H.(2003).Application of Neural Networks to an Emerging Financial Market: Forecasting and Trading the Taiwan Stock Index.Computers & Operations Research,30,901-923.
-
Christensen, K.,Podolskij, M.(2007).Realized Range-based Estimation of Integrated Variance.Journal of Econometrics,141,323-349.
-
Chuang, I. Y.,Lu, J. R.,Lee, P. H.(2007).Forecasting Volatility in the Financial Markets: a Comparison of Alternative Distributional Assumptions.Applied Financial Economics,17,1051-1060.
-
Donaldson, R. G.,Kamstra, M.(1996).Forecasts Combined with Neural Networks.Journal of Forecasting,15,49-61.
-
Dunis, C. L.,Huang, X.(2001).Forecasting and Trading Volatility: an Application of Recurrent Neural Regression and Model Combination.Journal of Forecasting,5,317-354.
-
Engle, R. F.,Ng, V. K.(1993).Measuring and Testing the Impact of News on Volatility.Journal of Finance,48,1749-1778.
-
Franses, P. H.,van Dijk, D.(1996).Forecasting Stock Market Volatility Using (Non-linear) GARCH Models.Journal of Forecasting,15,229-235.
-
Gokcan, S.(2000).Forecasting Volatility of Emerging Stock Markets: Linear versus Non-linear GARCH Models.Journal of Forecasting,19,499-504.
-
González-Rivera, G.,Tae-Hey, L.,Mishra, S.(2004).Forecasting Volatility: a Reality Check Based on Option Pricing, Utility Function, Value-at-risk and Predictive Likelihood.International journal of forecasting,20,629-645.
-
Hamid, S. A.,Iqbal, Z. Iqbal(2004).Using Neural Network for Forecasting Volatility of S&P 500 Index Futures Price.Journal of Business Research,57,1116-1125.
-
Hansen, P. R.(2005).A test for superior predictive ability.Journal of Business & Economic Statistics,4,365-380.
-
Hansen, P. R.,Lunde, A.(2006).Consistent Ranking of Volatility Models.Journal of Econometrics,131,97-121.
-
Hansen, P. R.,Lunde, A.(2005).A Forecast Comparison of Volatility Models: Does Anything Beat GARCH(1,1)?.Journal of Applied Econometrics,20,873-889.
-
Hung, J. C.,Ni, R. X.,Chang, M. C.(2009).The information Content of VIX Index and Range-based Volatility on Volatility Forecasting Performance of S&P500.Economics Bulletin,29(4),2601-2613.
-
Jarque, C. M.,Bera, A. K.(1987).A Test for Normality of Observations and Regression Residuals.International Statistics Review,55,163-172.
-
Koopman, S. J.,Jungbacker, B.,Hol, E.(2000).Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realized and Implied Volatility Measurements.Journal of Empirical Finance,12,445-475.
-
Kwiatkowski, D,Phillips, P. C. B.,Schmidt, P.,Shin, Y.(1992).Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We the Economic Time Series Have a Unit Root?.Journal of Econometrics,54(1-3),159-178.
-
Martens, M.,van Dijk, D.(2007).Measuring Volatility with the Realized Range.Journal of Econometrics,138,181-207.
-
McMillan, D. G.,Speight, A.,Apgwilym, O.(2000).Forecasting U.K. Stock Market Volatility.Applied Financial Economics,10,435-448.
-
Michael, Y. H.,Christos, T.(1999).Combining Conditional Volatility Forecast Using Neural Networks: An Application to the EMS Exchange Rate.Journal of International Financial Markets Institutions & Money,9,407-422.
-
Pagan, A. R.,Shwert, G. W.(1990).Alternative Models for Conditional Stock Market Volatility.Journal of Econometrics,45,267-290.
-
Phillips, P. C. B.,Perron, P.(1988).Testing for Unit in Time Series Regression.Biometrika,75,335-346.
-
Politis, D. N.,Romano, J. P.(1994).The Stationary Bootstrap.Journal of the American Statistical Association,89,1303-1313.
-
Poon, S. H.,Granger, C. W. J.(2003).Forecasting Volatility in Financial Markets: a Review.Journal of Economic Literature,41(2),478-539.
-
Rumelhart, D. E.,Hinton, G. E.,Williams, R.(1986).Learning Internal Representation by Error Propagation.Parallel Distributed Processing 1,Cambridge, MA:
-
Terasvirta, T.,van Dijk, D.,Medeiros, M. C.(2005).Linear Models, Smooth Autoregressions, and Neural Networks for Forecasting Macroeconomic Time Series: a Re-examination.International Journal of Forecasting,21,755-774.
-
Wang, Y. H.(2009).Nonlinear Neural Network Forecasting Model for Stock Index Option Price: Hybrid GJR-GARCH Approach.Expert Systems With Applications,36(1),564-570.
-
Wei, W.(2002).Forecasting Stock Market Volatility with Non-linear GARCH Models: a Case for China.Applied Economics Letters,9,163-166.
-
White, H.(2000).A Reality Check for Data Snooping.Econometrica,68,1097-1126.
-
Wilhelmsson, A.(2006).GARCH Forecasting Performance under Different Distribution Assumptions.Journal of Forecasting,25,561-578.
-
Yao, J.,Li, Y.,Tan, C. L.(2000).Option Price Forecasting Using Neural Networks.Omega, the International Journal of Management Science,28,455-466.
|