题名

Volatility Forecasting Performances of GARCH Family and Neural Networks

DOI

10.6736/JPSR.201203_9(1).0003

作者

Chien-Liang Chiu;Jui-Cheng Hung

关键词

Asymmetric GARCH models ; neural networks ; realized range-based ; SPA test

期刊名称

績效與策略研究

卷期/出版年月

9卷1期(2012 / 03 / 01)

页次

41 - 61

内容语文

英文

英文摘要

In this paper, we propose a hybrid model, which combines artificial neural networks (ANN) with GARCH-type models, to improve the volatility forecasting performance of GARCH-type models in Taiwan stock index. The realized range-based volatility is used as the true volatility proxy in evaluating forecasting performance while adopting statistical loss functions. A VaR-based loss function is employed to evaluate the predictive performances to further show economic benefits of this hybrid model. To control for the data-snooping problem, the superior predictive ability (SPA) test of Hansen (2005) is applied to reveal the statistical significance and ensure obtaining robust results. Our empirical result indicates that using artificial neural networks can indeed improve the GARCH-based volatility forecasting. However, the improvement is only limited to the statistical evaluation method.

主题分类 社會科學 > 管理學
参考文献
  1. Akgiray, A. K.(1989).Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts.Journal of Business,62,55-79.
  2. Andersen, T. G.(2000).Some Reflections on Analysis of High-frequency Data.Journal of Business and Economic Statistics,18,146-153.
  3. Andersen, T. G.,Bollerslev, T.(1997).Intraday Periodicity and Volatility Persistence in Financial Markets.Journal of Empirical Finance,4,115-158.
  4. Andersen, T. G.,Bollerslev, T.(1998).Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts.International Economic Review,39(4),885-905.
  5. Awartani, B. M. A.,Corradi, V.(2005).Predicting the Volatility of the S&P 500 Stock Index via GARCH Models: the Role of Asymmetries.International Journal of Forecasting,21,167-183.
  6. Balaban, E.(2004).Comparative Forecasting Performance of Symmetric and Asymmetric Conditional Volatility Models of an Exchange Rate.Economics Letters,83,99-105.
  7. Blair, B. J.,Ser-Hung, P.,Taylor, S. J.(2001).Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High-frequency Index Returns.Journal of Econometrics,105,5-26.
  8. Brailsford, T. J.,Faff, R. W.(1996).An Evaluation of Volatility Forecasting Techniques.Journal of Banking and Finance,20,419-438.
  9. Cao, Q.,Leggio, K. B.,Schniederjans, M. J.(2005).A Comparison between Fama and French's Model and Artificial Neural Networks in predicting the Chinese Stock Market.Computers & Operations Research,32,2499-2512.
  10. Chen, A. S.,Leung, M. T.,Daouk, H.(2003).Application of Neural Networks to an Emerging Financial Market: Forecasting and Trading the Taiwan Stock Index.Computers & Operations Research,30,901-923.
  11. Christensen, K.,Podolskij, M.(2007).Realized Range-based Estimation of Integrated Variance.Journal of Econometrics,141,323-349.
  12. Chuang, I. Y.,Lu, J. R.,Lee, P. H.(2007).Forecasting Volatility in the Financial Markets: a Comparison of Alternative Distributional Assumptions.Applied Financial Economics,17,1051-1060.
  13. Donaldson, R. G.,Kamstra, M.(1996).Forecasts Combined with Neural Networks.Journal of Forecasting,15,49-61.
  14. Dunis, C. L.,Huang, X.(2001).Forecasting and Trading Volatility: an Application of Recurrent Neural Regression and Model Combination.Journal of Forecasting,5,317-354.
  15. Engle, R. F.,Ng, V. K.(1993).Measuring and Testing the Impact of News on Volatility.Journal of Finance,48,1749-1778.
  16. Franses, P. H.,van Dijk, D.(1996).Forecasting Stock Market Volatility Using (Non-linear) GARCH Models.Journal of Forecasting,15,229-235.
  17. Gokcan, S.(2000).Forecasting Volatility of Emerging Stock Markets: Linear versus Non-linear GARCH Models.Journal of Forecasting,19,499-504.
  18. González-Rivera, G.,Tae-Hey, L.,Mishra, S.(2004).Forecasting Volatility: a Reality Check Based on Option Pricing, Utility Function, Value-at-risk and Predictive Likelihood.International journal of forecasting,20,629-645.
  19. Hamid, S. A.,Iqbal, Z. Iqbal(2004).Using Neural Network for Forecasting Volatility of S&P 500 Index Futures Price.Journal of Business Research,57,1116-1125.
  20. Hansen, P. R.(2005).A test for superior predictive ability.Journal of Business & Economic Statistics,4,365-380.
  21. Hansen, P. R.,Lunde, A.(2006).Consistent Ranking of Volatility Models.Journal of Econometrics,131,97-121.
  22. Hansen, P. R.,Lunde, A.(2005).A Forecast Comparison of Volatility Models: Does Anything Beat GARCH(1,1)?.Journal of Applied Econometrics,20,873-889.
  23. Hung, J. C.,Ni, R. X.,Chang, M. C.(2009).The information Content of VIX Index and Range-based Volatility on Volatility Forecasting Performance of S&P500.Economics Bulletin,29(4),2601-2613.
  24. Jarque, C. M.,Bera, A. K.(1987).A Test for Normality of Observations and Regression Residuals.International Statistics Review,55,163-172.
  25. Koopman, S. J.,Jungbacker, B.,Hol, E.(2000).Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realized and Implied Volatility Measurements.Journal of Empirical Finance,12,445-475.
  26. Kwiatkowski, D,Phillips, P. C. B.,Schmidt, P.,Shin, Y.(1992).Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We the Economic Time Series Have a Unit Root?.Journal of Econometrics,54(1-3),159-178.
  27. Martens, M.,van Dijk, D.(2007).Measuring Volatility with the Realized Range.Journal of Econometrics,138,181-207.
  28. McMillan, D. G.,Speight, A.,Apgwilym, O.(2000).Forecasting U.K. Stock Market Volatility.Applied Financial Economics,10,435-448.
  29. Michael, Y. H.,Christos, T.(1999).Combining Conditional Volatility Forecast Using Neural Networks: An Application to the EMS Exchange Rate.Journal of International Financial Markets Institutions & Money,9,407-422.
  30. Pagan, A. R.,Shwert, G. W.(1990).Alternative Models for Conditional Stock Market Volatility.Journal of Econometrics,45,267-290.
  31. Phillips, P. C. B.,Perron, P.(1988).Testing for Unit in Time Series Regression.Biometrika,75,335-346.
  32. Politis, D. N.,Romano, J. P.(1994).The Stationary Bootstrap.Journal of the American Statistical Association,89,1303-1313.
  33. Poon, S. H.,Granger, C. W. J.(2003).Forecasting Volatility in Financial Markets: a Review.Journal of Economic Literature,41(2),478-539.
  34. Rumelhart, D. E.,Hinton, G. E.,Williams, R.(1986).Learning Internal Representation by Error Propagation.Parallel Distributed Processing 1,Cambridge, MA:
  35. Terasvirta, T.,van Dijk, D.,Medeiros, M. C.(2005).Linear Models, Smooth Autoregressions, and Neural Networks for Forecasting Macroeconomic Time Series: a Re-examination.International Journal of Forecasting,21,755-774.
  36. Wang, Y. H.(2009).Nonlinear Neural Network Forecasting Model for Stock Index Option Price: Hybrid GJR-GARCH Approach.Expert Systems With Applications,36(1),564-570.
  37. Wei, W.(2002).Forecasting Stock Market Volatility with Non-linear GARCH Models: a Case for China.Applied Economics Letters,9,163-166.
  38. White, H.(2000).A Reality Check for Data Snooping.Econometrica,68,1097-1126.
  39. Wilhelmsson, A.(2006).GARCH Forecasting Performance under Different Distribution Assumptions.Journal of Forecasting,25,561-578.
  40. Yao, J.,Li, Y.,Tan, C. L.(2000).Option Price Forecasting Using Neural Networks.Omega, the International Journal of Management Science,28,455-466.