题名

大數據之應用平行K-means演算法-建構股市決策分析

并列篇名

Big Data Application Using Parallel K-means Clustering to Construct Stock Decision Support Analysis

DOI

10.6736/JPSR.201703_14(1).0002

作者

李國誠(Kuo-Chen Li);李彥賢(Yen-Hsein Lee);何宗燁(Tsung-Yeh Ho)

关键词

大數據 ; 平行K-means演算法 ; 決策支援系統 ; 技術指標 ; Hadoop ; Big Data ; Parallel K-means cluster ; Decision Support System ; Technical Analysis ; Hadoop

期刊名称

績效與策略研究

卷期/出版年月

14卷1期(2017 / 03 / 01)

页次

21 - 45

内容语文

繁體中文

中文摘要

本研究以Hadoop平台為基礎讓股票先透過技術指標公式平行運算後,接著將K-means演算法套用於MapReduce框架上,藉此將股票作分群並同時提高運算效率,最後將分群結果定義決策後,再推薦投資者作買進或賣出之決策。本研究實證結果分群後的群集與大盤經過檢定後,大部分的檢定結果皆優於大盤,且能夠獲得更高之獲利,其分析出的結果呈現出來供投資者作為決策參考。

英文摘要

This research applies map-reduce parallel computing technologies to analyze the stock technical indicators on Hadoop platform. The computation efficiency is improved significantly; in the meantime, the target indicators are clustered by parallel K-means clustering algorithm and patterns are defined. Based on the found patterns, the most profitable buy-sell decisions will be recommended. The experiments were carried out to validate the proposed framework. Results show that most suggested buy-sell strategies beat the market and gain higher profit. In addition, the analyzed results could be used as decision support for stock investors.

主题分类 社會科學 > 管理學
参考文献
  1. 李顯儀、吳幸姬(2009)。技術分析資訊對共同基金從眾行為的影響。臺大管理論叢,20(1),227-260。
    連結:
  2. Anchalia, P. P.,Koundinya, A. K.,Srinath, N. K.(2013).MapReduce Design of K-Means Clustering Algorithm.Information Science and Applications (ICISA), 2013 International Conference on
  3. Dean, J.,Ghemawat, S.(2008).MapReduce: Simplified Data Processing on Large Clusters.Communications of the ACM,51(1),107-113.
  4. Eren, B.,Karabulut, E. Ç .,Alptekin, S. E.,Alptekin, G. I.(2015).A K-Means Algorithm Application on Big Data.Proceedings of the World Congress on Engineering and Computer Science
  5. González, R. C.,Tou, J. T.(1974).Pattern Recognition Principles. Applied Mathematics and Computation.Reading, MA:Addison-Wesley.
  6. Han, J.,Kamber, M.,Pei, J.(2011).Data Mining: Concepts and Techniques: Concepts and Techniques.Elsevier.
  7. Jones, C. P.(2007).Investments: Analysis and Management.John Wiley & Sons.
  8. Jothimani, D.,Shankar, R.,Yadav, S. S.(2014).A Big Data Analytical Framework For Portfolio Optimization.
  9. MacQueen, J.(1967).Some methods for classification and analysis of multivariate observations.Proceedings of the fifth Berkeley symposium on mathematical statistics and probability
  10. Manyika, J.,Chui, M.,Brown, B.,Bughin, J.,Dobbs, R.,Roxburgh, C.,Byers, A. H.(2011).Big Data: The Next Frontier for Innovation, Competition, and Productivity.
  11. Stoffel, K.,Belkoniene, A.(1999).Parallel K/H-Means Clustering for Large Data Sets.European Conference on Parallel Processing
  12. Wang, F.,Yu, P. L. H.,Cheung, D. W.(2014).Combining technical trading rules using parallel particle swarm optimization based on Hadoop.2014 International Joint Conference on Neural Networks (IJCNN)
  13. Zhang, X.,Hu, Y.,Xie, K.,Zhang, W.,Su, L.,Liu, M.(2015).An Evolutionary Trend Reversion Model for Stock Trading Rule Discovery.Knowledge-Based Systems,79,27-35.
  14. Zhao, W.,Ma, H.,He, Q.(2009).Parallel k-means clustering based on mapreduce.IEEE International Conference on Cloud Computing
  15. 王豐勝、黃彥文(2013)。台灣雲端巨量資料的策略與啟動─巨量資料分析工具與平台。經濟前瞻,148,116-120。
  16. 牟聖遠(2014)。碩士論文(碩士論文)。義守大學。
  17. 吳德生(2005)。碩士論文(碩士論文)。國立台北大學。
  18. 林儒霆(2007)。碩士論文(碩士論文)。私立中國文化大學。
  19. 洪美慧(1997)。碩士論文(碩士論文)。東海大學。
  20. 高榮泰(2009)。碩士論文(碩士論文)。國立台灣大學。
  21. 陳金泉(2010)。碩士論文(碩士論文)。大同大學。
  22. 麥啟倫(2015)。碩士論文(碩士論文)。國立台灣大學。
  23. 趙晟鈞(2012)。碩士論文(碩士論文)。嶺東科技大學。
  24. 謝劍平(2008)。現代投資學分析與管理四版。智勝文化出版。
  25. 簡玠忠(2013)。碩士論文(碩士論文)。國立中興大學。