题名

以磁振造影技術研究人體膝關節之魔角

并列篇名

The Magic Angle Study of Human Knee Joint by Magnetic Resonance Imaging

作者

柯佩辰(Pei-Chen Ko);鍾承諺(Cheng-Yea Chung);李芳朋(Fang-Peng Li);蔡譯(Yi Tsai);莊奇容(Chi-Long Juang)

关键词

磁振造影 ; 魔角假影 ; 肌腱 ; 韌帶 ; 膝關節 ; Magnetic Resonance Imaging ; Magic Angle ; Tendon ; Ligament ; Knee Joint

期刊名称

台灣應用輻射與同位素雜誌

卷期/出版年月

14卷4期(2018 / 12 / 01)

页次

1653 - 1658

内容语文

繁體中文

中文摘要

在進行膝關節的磁振造影時,偶爾會發現同一條韌帶竟然會產生訊號亮度上的差異,這引發了我們對差異發生原因的好奇心。經文獻調查發現,這是因為其中一段韌帶恰好與主磁場呈特殊角度所致,此角度被稱為魔角。為了對魔角與韌帶的關係有更詳盡的了解,邀請某位健康的同學,以磁振造影儀器進行人體膝關節的掃描,掃描後圈選並量取膝關節韌帶中與主磁場呈不同角度的訊號,然後以儀器所附之軟體繪製角度與訊號強度的關係圖,再以自行編寫的Matlab程式及Excel程式進行數據分析。研究結果指出,韌帶的訊號在某些角度較高,某些角度較低,而且有特定的曲線分布。這是因為韌帶的主要成分是膠原,所以如果韌帶恰好與主磁場成一定角度,則這段韌帶在縱向弛緩及質子密度的加權影像中會因結構的關係而呈現較高的訊號。我們因此可做出下列結論:在做正常膝關節掃描時,應注意魔角的存在,做適度的調整以避免誤診。

英文摘要

When performing magnetic resonance imaging of the knee joint, sometimes it is found that the same ligament had different signal brightness, which induced our curiosity about the cause of these differences. According to literature investigation, it is believed that part of the ligament has a particular angle with the main magnetic field. This angle is known as the "magic angle". In order to deeper understand the relationship between magic angle and ligaments, a healthy classmate is invited to be the subject, and his knee joint was scanned by a Siemens magnetic resonance (MR) imaging instrument. After the MR images were acquired, the regions of interested (ROIs) were picked up and there signal intensities were measured. Then, the relationship between the angles and signal intensities were established with the built-in software. Finally, the data were analyzed by the Matlab program and Excel program. The results indicated that the ligament signals are higher at certain angles, and had a specific distribution curve. This is because the main component of the ligament is collagen. If the ligament is at a particular angle to the main magnetic field, the ligament will show a higher signal intensity in T1 weighted image (T1WI) and proton density weighted image (PDWI). In conclusion, we should pay attention on the existence of magic angle when applying the normal MRI knee scan and suitable adjustments may need to avoid misdiagnoses.

主题分类 醫藥衛生 > 醫藥總論
工程學 > 核子工程
工程學 > 化學工業
参考文献
  1. Berendsen, HJC(1962).Nuclear magnetic resonance study of collagen hydration.J Chem Phys,36,3297-3305.
  2. Borthakur, A,Mellon, E,Niyogi, S,Witschey, W,Kneeland, JB,Reddy, R(2006).Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.NMR Biomed,19(7),781-821.
  3. Cao, Y,Fatemi, V,Demir, A(2018).Correlated insulator behaviour at half-filling in magic-angle graphene superlattices.Nature,556(7699),80-84.
  4. Dardzinski, BJ,Mosher, TJ,Li, S(1997).Spatial variation of T2 in human articular cartilage.Radiology,205(2),546-550.
  5. Erickson, SJ,Cox, IH,Hyde, JS,Carrera, GF,Strandt, JA,Estkowski, LD(1991).Effect of tendon orientation on MR imaging signal intensity: a manifestation of the "magic angle" phenomenon.Radiology,181,389-392.
  6. Erickson, SJ,Prost, RW,Timins, ME(1993).The "magic angle" effect: background physics and clinical relevance.Radiology,188(1),3-25.
  7. Fullerton, GD,Cameron, IL,Ord, VA(1985).Onentation of tendons in the magnetic field and its effect on T2-relaxation times.Radiology,155,433-435.
  8. Hashemi, Ray H.,Bradley, William G., Jr.,Lisanti, Christopher J.,莊奇容(編譯),楊素珍(編譯)(2014).基礎磁振造影.新北市:合記書局.
  9. Kellgren, JH,Lawrence, JS(1957).Radiological assessment of osteoarthritis.Ann Rheum Dis,16,494-502.
  10. Kellgren, JH,Lawrence, JS(1957).Radiological assessment of osteo-arthrosis.Ann Rheum Dis,16,494-502.
  11. Li, X,Ma, C Benjamin,Link, TM,Castillo, DD,Blumenkrantz, G,Lozano, J(2007).In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI.Osteoarthritis Cartilage,15(7),789-797.
  12. Menezes, NM,Gray, ML,Hartke, JR,Burstein, D(2004).T2 and T1rho MRI in articular cartilage systems.Magn Reson Med,51,503-509.
  13. Mosher, TJ,Dardzinski, BJ(2004).Cartilage MRI T2 relaxation time mapping: overview and applications.Semin Musculoskelet Radiol,8(4),355-368.
  14. Pakin, SK,Xu, J,Schweitzer, ME,Regatte, RR(2006).Rapid 3D-T1rho mapping of the knee joint at 3.0T with parallel imaging.Magn Reson Med.,56,563-571.
  15. Peto, S,Gillis, P.,Henri, VP(1990).Structure and dynamics of water in tendon from NMR relaxation measurements.Biophys J,57,71-84.
  16. Regatte, RR,Akella, SVS,Borthakur, A,Kneeland, JB,Reddy, R(2002).Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho.Academic Radiology,9(12),1388-1394.
  17. Rubinstein, J,Kim, JK,Morava-Protzner, I,Stanchev, P,Henkelman, RM(1993).Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage.Radiology,188,219-226.
  18. Smith, HE,Mosher, TJ,Dardzinski, BJ,Collins, BG,Collins, CM,Yang, QX(2001).Spatial variation in cartilage T2 of the knee.J Magn Reson Imaging,14(1),50-55.
  19. Williams, PL,Warwick, R,Dyson, M,Bannister, LH(1989).Anatomy of the human body.Edinburgh, Scotland:Churchill Livingstone.
  20. Xia, Y,Moody, JB,Alhadlaq, H.(2002).Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study.Magn Reson Med.,48(3),460-469.