题名

運用類神經網路於證券業網路下單服務品質之研究

并列篇名

A Study on the Service Quality for Online Stock Trading by Applying Neural Network

DOI

10.30066/JCS.200503.0001

作者

王美慧(Mei-Huei Wang);簡妤玲(Yu-Ling Chien)

关键词

服務品質 ; 網路券商 ; 類神經網路 ; Service Quality ; Online Trading Stock Companies ; Neural Network

期刊名称

顧客滿意學刊

卷期/出版年月

1卷1期(2005 / 03 / 01)

页次

1 - 30

内容语文

繁體中文

中文摘要

網際網路的興起為傳統的投資交易模式帶來革命性的衝擊,國內外證券商紛紛加入網路交易的行列,因此針對網路顧客的需求來瞭解顧客所重視的服務品質項目以提昇服務品質,儼然已成為重要的課題。本研究嘗試將類神經網路辨試類別的特性應用於證券業網路下單執行服務品質的類別分析,並利用多變量分析中的因素分析將顧客對服務品質重要項目的滿意度化成數項構面,再將這幾個構面交予類神經網路學習來建立網路模式,以提供證券業作為執行服務品質管理成效評定的參考依據。本研究所構建的網路模型分類歸屬能力是以辨識率為評估指標,綜合類神經網路與統計學之區別分析的研究,實證結果顯示類神經網路在學習樣本或測試樣本上,辨識率分別高達99.82%與99.65%,而傳統的區別分析其整體辨識率只有99.33%。因此,若採用類神經網路進行分類判斷,有較高的辨識率,能產生較好的分類結果,所以運用類神經網路於網路下單執行服務品質管理分類,其分類效果及穩定度皆比區別分析為佳,是一項值得建議使用的工具。

英文摘要

With the development of internet financial investment, domestic and foreign securities have scrambled to launch online stock. To focus on customer demands of online trading investors, understand the main factors that customers really care, and improve their service quality are becoming increasingly important issues. This study applies the classification characteristics of artificial neural network to the categorizing level of service quality for online trading stock companies. Back-Propagation neural network is adopted as the fundamental framework for this study. The objective of this study is to extract several dimensions of the service quality of the customers' satisfaction through the factor analysis of the multivariate analysis. These dimensions are taken as the input variables to build a neural network model through the learning process. The results validate that the classification performance of neural network is better than discriminant analysis. Neural network is a very useful tool for online trading stock companies to execute the performance measurement when they implement service quality activities.

主题分类 社會科學 > 經濟學
社會科學 > 管理學
参考文献
  1. Carman, J. M.(1990).Consumer perceptions of service quality: An assessment of the SERVQUAL dimensions.Journal of Research,66,33-55.
  2. Dutta, S.,Shekhar, S.(1988).Bond-Rating: A Non-Conversation Application of Neural Network.
  3. Fan, M.,Stallert, J.,Whinston, A. B.(2000).The Internet and the future of financial markets.Communications of the ACM,43(11),83-88.
  4. Fish, K. E.,Barnes, J. H.,Aiken, M. W.(1995).Artificial neural networks: A new methodology for industrial market segmentation.Industrial Marketing Management,24(5),431-438.
  5. Glorfeld, L. W.,Hardgrave, B. C.(1996).An improved method for developing neural networks: The case of evaluating commercial loan credit worthiness.Computers Operations Research,23(10),933-944.
  6. Internet Broker Scorecard
  7. Hruschka, H.,Natter, M.(1999).Comparing performance of feed forward neural nets and k-means for cluster-based market segmentation.European Journal of Operational Research,114(Issue. 2),346-353.
  8. Hu, M. Y.,Shanker, M.,Hung, H. S.(1999).Estimation of posterior probabilities of consumer situational choices with neural network classifiers.International Journal of Research in Marketing,16(4),307-317.
  9. Law, R.,Au, N.(1999).A neural network model to forecast Japanese demand for travel to Hong Kong.Tourism Management,20(1),89-97.
  10. Mangiameli, P. W.(1999).An improve neural classification network for the two-group problem.Computer & Operations Research,26(5),443-460.
  11. Odom, M. D.(1989).A Neural Network Model for Bankruptcy Prediction.
  12. Parasuraman, A.,Zeithaml, V.,Berry, L.(1985).A conceptual model of service quality and its implications for future research.Journal of Marketing,49(3),44-48.
  13. Parasuraman, A.,Zeithaml, V.,Berry, L.(1988).Communication and control process in the delivery of service quality.Journal of Marketing,52(2),35-48.
  14. Peterson, A. H.(2000).Online brokerage services.Credit Union Magazine.
  15. Priamuthu, S.,Ragavan, H.,Shaw, M. J.(1998).Using feature construction to improve the performance of neural network.Management Science,44(3),416-430.
  16. Santini, L.(2001).Decline in online trading doesn`t bother knight.The Investment Dealers`Digest,14-15.
  17. Surkan, A. J.,Singleton, J. C.(1989).Neural Networks for Bond Rating Improved by Multiple Hidden Layers.
  18. Trombly, M.,Ameritrade, J. P.(2001).Morgan to lay off employees of online operations.Computerworld,35(3),28.
  19. Wong, B. K.,Bodnovich, T. A.,Yakup, S.(1997).Neural network application in business: A review and analysis of the Literature (1988-95).Decision Support System,13(8),52-64.
  20. 王葆真(1997)。國立交通大學管理科學研究所。
  21. 江秋靜(2000)。長庚大學管理學研究所。
  22. 李保羅(1999)。國立交通大學經營管理研究所。
  23. 汪忠平(1997)。私立東吳大學企業管理研究所。
  24. 林爲元(1998)。國立政治大學資訊管理研究所。
  25. 張益豪(1999)。國立台灣大學商學研究所。
  26. 張瑞當、黃文俊(2001)。網路下單投資者與網路券商滿意因素差異之分析。產業管理學報,2(2),221-246。
  27. 張瑜真(1997)。交通大學管理科學研究所。
  28. 陳俊呈(1999)。國立海洋大學航運管理研究所。
  29. 馮震宇(2001)。E時代證券商法律風險與規範探討(下)。證券暨期貨管理,19(2),1-26。
  30. 葉怡成(1999)。類神經網路模式應用與實作。台北:儒林圖書有限公司。
  31. 葉哲政(1997)。私立朝陽科技大學財務金融研究所。
  32. 廖瑞榮(1999)。台灣大學資訊管理研究所。
  33. 蕭富元(1999)。淡江大學資訊管理研究所。