题名

城、鄉大學生網路購物市場之顧客價值分析

并列篇名

Customer Value Analysis of Internet Shopping Market of University Students in Urban and Town

DOI

10.30066/JCS.200909.0005

作者

蔣文育(Wen-Yu Chiang)

关键词

顧客價值 ; SOM ; Apriori演算法 ; RFM模型 ; Customer Values ; SOM ; Apriori Algorithm ; RFM Model

期刊名称

顧客滿意學刊

卷期/出版年月

5卷2期(2009 / 09 / 01)

页次

103 - 126

内容语文

繁體中文

中文摘要

本研究針對台灣之城、鄉大學學生進行網路購物之市場購買因素探討,目的在於精確掌握大學生網路購物市場之顧客價值。本文網路購物產業中之大學生市場爲研究對象,研究方法採用非監督式類神經分群法之自組織特徵圖(Self-Organizing Map; SOM)對城市、鄉鎮大學生進行網路購物之市場區隔分析,並以區別分析測試其分群之準確度,分群結果發現三個網路購物市場:成本考量、風險考量、以及便利考量。以Apriori演算法分析分群結果、RFM模型、以及城市/鄉鎮地理變數,而分別產生5項與4項位於城市與鄉鎮大學之網路購物顧客價值關聯規則,進而了解大學生消費者之價值與其隸屬之市場,以便業者對其行銷使其等級提昇。

英文摘要

This research discusses the factors of Internet shopping markets of university students in urban and town. The objective is to understand precisely the customer value. Self-Organizing Map (SOM) algorithm was applied to analyze the sample from university students in urban and town. This market can be divided into three clusters. Their features are: cost, risk, and convenience considerations. Apriori algorithm and RFM model were applied to create 5 association rules for student in urban and 4 association rules for student in town. Eventually, this research discovers that upgradeable customers for their value level. Internet shopping industry can promote them to be the higher level.

主题分类 社會科學 > 經濟學
社會科學 > 管理學
参考文献
  1. 徐村和、林凌仲(2003)。應用模糊決策法分析網路消費者知覺風險。企業管理學報,58,55-83。
    連結:
  2. 陳淑美、彭建文(2003)。網路購物與實體商店購物之競爭分析:以年輕學生的選擇偏好爲例。建築與規劃學報,4(1),1-22。
    連結:
  3. 蔣文育(2008)。從市場觀點分析數位學習選課之行爲。顧客滿意學刊,4(1),133-162。
    連結:
  4. 蘇柏全、林熙禎、李宙奇(2006)。RFM模型結合貝氏隨機模式與時間序列模式運用於顧客狀態預測。電子商務學報,8(2),193-218。
    連結:
  5. Agrawal, R.,Imielinski, T.,Swami, A. N.(1993).Data Mining: A Performance Perspective.IEEE Transactions on Knowledge and Data Engineering,5(6),914-925.
  6. Berry, M. J. A.,Linoff, G. S.(2004).Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management.New York, NY:John Wiley and Sons, Inc.
  7. Brown, M.,Pope, N.,Voges, K.(2003).Buying or Browsing? An Exploration of Shopping Orientations and Online Purchase Intention.European Journal of Marketing,37(11),1666-1684.
  8. Calnatone, R. J.,Sawyer, A. G.(1978).The Stability of Benefit Segments.Journal of Marketing Research,15(3),395-404.
  9. Churchill, G. A.(1979).A Paradigm for Developing Better Measures of Marketing Constructs.Journal of Marketing Research,16(1),64-73.
  10. Churchill, G. A.(1995).Marketing Research: Methodological Foundations.New York, NY:Dryden Press.
  11. Cohen, J.,Cohen, P.(1975).Applied Multiple Regression/Correlation Analysis for the Behavior Sciences.Hillsdale, NY:Lawrence Erlbaum.
  12. Dillon, T. W.,Reif, H. L.(2004).Factors Influencing Consumers' E-Commerce Commodity Purchases.Information Technology, Learning, and Performance Journal,22(2),1-12.
  13. Eklund, T.,Back, B.,Vanharanta, H.,Visa, A.(2003).Unsing the Self-organizing Map as a Visualization Tool in Financial Benchmarking.Information Visualization,2(3),171-181.
  14. Goodman, J.(1992).Leveraging the Customer Database to your Competitive Advantage.Direct Marketing,55(8),26-27.
  15. Hughes, A. M.(1994).Strategic Database Marketing.Chicago, IL:Probus.
  16. Jupiter Media(2006).Forecasts Online Retail Spending Will Reach $144 Billion in 2010, a Cagr of 12% from 2005.New York, NY:Jupiter Research.
  17. Kohonen, T.(1990).The Self-organizing Map.Proceedings of the IEEE,78(9),1464-1480.
  18. Lee, G. G.,Lin, H. F.(2006).Customer Perceptions of E-service Quality in Online Shopping.International Journal of Retail and Distribution Management,33(2),161-176.
  19. Likert, R.(1932).A Technique for the Measurement of Attitudes.Archives of Psychology,22(140),1-55.
  20. Linoff, G. S.,Berry, M. J. A.(2002).Mining the Web: Transforming Customer Data into Customer Value.New York, NY:John Wiley and Sons, Inc.
  21. Mann, R. J.(2008).Electronic Commerce.New York, NY:Aspen.
  22. Mazanec, J. A.(1995).Positioning Analysis with Self-organizing Maps.Cornell Hotel and Restaurant Administration Quarterly,36(6),80-95.
  23. Miglautsch, J.(2000).Thoughts on RFM Scoring.Journal of Database Marketing,8(1),2-7.
  24. Miglautsch, J.(2002).Application of RFM Principles: What to Do with 1-1-1 Customers?.Journal of Database Marketing,9(4),319-324.
  25. Nunnally, J. C.(1978).Psychometric Theory.New York, NY:McGraw-Hill.
  26. Roberts, M. L.(1992).Expanding the Role of the Direct Marketing Database.Journal of Direct Marketing,6(2),51-60.
  27. Roiger, R. J.,Geatz, M. W.(2003).Data Mining: A Tutorial-Based Primer.New York, NY:Pearson Education Inc.
  28. Xu, Y.,Paulins, V. A.(2005).College Students' Attitudes Toward Shopping Online for Apparel Products: Exploring a Rural Versus Urban Campus.Journal of Fashion Marketing and Management,9(4),420-433.
  29. 吳萬益(2005)。企業研究方法。台北市:華泰文化。
  30. 汪美香、葉桂珍(2000)。消費者屬性、網站滿意度與網路購物意願關係之研究。企業管理學報,48,121-137。
  31. 周文卿(2007)。2006-2007台灣網路購物市場發展分析。資策會。
  32. 林朝興、唐瑩荃(2006)。以顧客價值分析與權重建盡探勘來進行協力式音樂推薦。資訊、科技與社會,6(1),1-26。
  33. 陳虹君、張舜德(2003)。銷售資料挖掘與顧客關係管理整合之研究-以製藥業爲例。2003電子商務與數位生活研討會,台北市:
  34. 曾士育、李昇暾、徐明龍(2004)。以自組織映射圖神經網路探究台股投資決策。第十五屆國際資訊管理學術研討會,桃園:
  35. 黃俊英、林震岩(1997)。SAS精析與實例。台北市:華泰書局。
  36. 羅巧芳、鄭易英、吳信宏、張苑惠(2006)。應用資料探勘於戶外活動用品專賣店之顧客價值分析。第十二屆全國品質管理研討會,台中: