题名

Investigating Fibonacci Sequence Properties for Theoretical Computer Science

DOI

10.6459/JCM.200503_2(1).0003

作者

Chia-Long Wu;Ching-Seh Wu

关键词

Algorithmic number theory ; elementary cryptography ; information science ; primality proving ; recurrence relation

期刊名称

危機管理學刊

卷期/出版年月

2卷1期(2005 / 03 / 01)

页次

19 - 26

内容语文

英文

英文摘要

The Fibonacci sequence has played dominant roles in many branches of science and engineering. This sequence not only has an amazing number of applications in nature, but also has a tremendous number of interesting properties. The main object of this paper is to propose a systematic investigation of the familiar Fibonacci sequence in number theory and present a heuristic derivation of their properties. In this paper, we not only analyze the basic concepts and definitions of recurrence functions, generating functions, continued fractions, the Golden ratio, and primality test, but also give detailed analysis and further discussions for them with a different point of view when they incorporated with the Fibonacci sequence. Based on these concepts and definitions, we engage to contribute exact theorem descriptions and proofs. Moreover, extended properties including recurrence relations, summation formulas, and primality proving issues related to Fibonacci sequence are systematically studied and further explored.

主题分类 社會科學 > 管理學
参考文献
  1. Agrawal, M.,Kayal, N.,Saxena, N.(2002).Technical Report, IIT Kanpur.
  2. Bender, C.(1994).Capacitive ladder networks,41(8),557-558.
  3. Bernstein, D. J.(2005).Journal of Algorithms.
  4. Brillhart, J.(1998).Fibonacci Quarterly.
  5. Dubner, H.,Keller, W.(1999).Mathematics of Computation.
  6. Guy, R. K.(1994).Unsolved Problems in Number Theory.New York:Springer-Verlag.
  7. Karatsuba, A. A.(1995).Complex Analysis in Number Theory, CRC.
  8. Knuth, D. E.(1997).The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Addison Wesley.
  9. Lou, D.-C.,Wu, C.-L.,Ou, R.-Y.(2002).International Journal of Computer Mathematics.
  10. Miller, G.(1976).Journal of Computer and System Sciences.
  11. Monier, L.(1976).Journal of Theorem Computer Science.
  12. Nathanson, M. B.(2000).Elementary Methods in Number Theory.New York:Springer-Verlag.
  13. Pfleeger, C. P.,Pfleeger, S. L.(2003).Security in Computing.New York:Prentice Hall.
  14. Philippou, A. N.,Bergum, G. E.,Horadam, A. F.(1986).Fibonacci Numbers and Their Applications, D. Reidel Publishing Company.
  15. Pollard, J.(1974).Proceeding of Cambridge Philosophy Society.
  16. Rabin, M. O.(1980).J. Number Theory.
  17. Wu, C.-L.,Lou, D.-.,Pan, C.-C.(2004).Proceedings of Crisis Management.
  18. Wu, C.-L.,Lou, D.-C.,Chang, T.-J.(2004).Proceedings of Crisis Management.
  19. Yan, S. Y.(1995).Computers Mathematics Application.
  20. Yan, S. Y.(2000).Number Theory for Computing.New York:Springer-Verlag.