题名

多次任務型態的選擇性維修最佳化模型

并列篇名

The Optimal Model of Selective Maintenance for Multi-mission

DOI

10.6459/JCM.202203_19(1).0003

作者

賴智明(C. M. Lai);蔡明宏(M. H. Tsai)

关键词

可靠度 ; 進化式演算法 ; 選擇性維修 ; 多次任務維修 ; Reliability ; Evolutionary Algorithm ; Selective Maintenance ; Multitask Maintenance ; Multi-Objective Method

期刊名称

危機管理學刊

卷期/出版年月

19卷1期(2022 / 03 / 01)

页次

23 - 36

内容语文

繁體中文

中文摘要

海軍成功級艦平時主要負責海域偵巡任務;戰時則依戰況執行要域防衛、聯合反封鎖及聯合截擊作戰等任務。與其他工程系統相同,必須維持艦載系統的正常運作才能發揮艦艇應有功能,以滿足平時與戰時的需求。艦艇除大修(數年一次,依艦型而定)及定期保養(約每年一次)之外,其餘時間均透過泊港期間艦力自修,執行各系統的維修。礙於泊港期間可供維修的時間、人力與預算有限,無法全面檢修,因此艦力自修的內容影響次一任務的執行甚深。選擇性維修的目的是系統在兩次運行之間的中斷間隔(暫時不需運作),進行維修活動,由於有限的時間及資源,通常無法對所有元件全面維修,因此,必須選擇適當的元件實施適當級別的維修,以維持或提升系統的可靠度。本研究以成功級艦動力系統為例,建構多次任務型態的選擇性維修模型,維修手段包含更換新品、重點維修及一般性維修等。由於模型複雜度依元件數量、任務次數及維修項目等組合呈指數成長且為非線性規劃,因此以簡群演算法為基礎,客制化可有效率求解問題的進化式演算法。

英文摘要

In peacetime, the Navy's Cheng Kung class ships are mainly responsible for the sea area investigation and patrol tasks; in wartime, they are mainly responsible for the defense of important areas, joint anti blockade and joint interception operations according to the combat conditions. Like other engineering systems, the normal operation of shipboard system must be maintained in order to give full play to the ship's functions and meet the needs of peacetime and wartime. In addition to the overhaul (once a few years, depending on the ship type) and regular maintenance (about once a year), the rest of the time is through self-repair during berthing to carry out the maintenance of various systems. Due to the limited time, manpower and cost available for maintenance during berthing, it is impossible to carry out comprehensive maintenance. Therefore, the content of self-repair of ship power has a profound impact on the implementation of the next task. The purpose of selective maintenance is to carry out maintenance activities at the time interval between the two operations of the system. Due to the limited time and resources, it is usually impossible to carry out comprehensive maintenance on all components. Therefore, it is necessary to select the appropriate components to carry out the appropriate level of maintenance in order to maintain or improve the reliability of the system. In this study, the power system of the success class warship is taken as an example to construct a multi mission selective maintenance model. The maintenance strategy covers corrective and preventive maintenance. Since the complexity of the model grows exponentially with the combination of the number of components, the number of tasks and maintenance items, and it is a nonlinear programming, an evolutionary algorithm based on simple group algorithm can be customized to solve the problem efficiently.

主题分类 社會科學 > 管理學
参考文献
  1. Afolalu, A.S.,Enesi, Y.S.,Kehinde, O.,Samuel, U.A.,Ikechi, V.I.,Remilekun, R.E.(2018).Failure Mode and Effect Analysis a Tool for Reliability Evaluation.European Journal of Engineering Research and Science,3(4),65-68.
  2. Ali, I.,Hasan, S. S.(2013).Bi-criteria optimization technique in stochastic system maintenance allocation problem.American Journal of Operations Research,3
  3. Azizipanah-Abarghooee, R.(2013).A new hybrid bacterial foraging and simplified swarm optimization algorithm for practical optimal dynamic load dispatch.International Journal of Electrical Power & Energy Systems,49,414-429.
  4. Azizipanah-Abarghooee, R.,Niknam, T.,Gharibzadeh, M.,Golestaneh, F.(2013).Robust, fast and optimal solution of practical economic dispatch by a new enhanced gradient-based simplified swarm optimisation algorithm.IET Generation, Transmission & Distribution,7(6),620-635.
  5. Batkovskiy, A.M.,Khrustalev, E.Y.,Khrustalev, O.(2016).Models and methods for evaluating operational and financial reliability of high-tech enterprises.Journal of Applied Economic Sciences Romania: European Research Centre of Managerial Studies in Business Administration,11(7),45.
  6. Cao, W.,Jia, X.,Hu, Q.,Zhao, J.,Wu, Y.(2018).A literature review on selective maintenance for multi‐unit systems.ality and Reliability Engineering International,34(5),824-845.
  7. Cassady, C.R.,Murdock, W.P., Jr,,Pohl, E.A.(2001).Selective maintenance for support equipment involving multiple maintenance actions.European Journal of Operational Research,129(2),252-258.
  8. Cassady, C.R.,Pohl, E.A.,Murdock, W.P.(2001).elective maintenance modeling for industrial systems.Journal of quality in maintenance engineering
  9. Chaabane, K.,Khatab, A.,Diallo, C.,Aghezzaf, E.-H.,Venkatadri, U.(2020).Integrated imperfect multimission selective maintenance and repairpersons assignment problem.Reliability Engineering & System Safety,199,106895.
  10. Dekker, R.(1996).pplications of maintenance optimization models: a review and analysis.liability engineering & system safety,51(3),229-240.
  11. Goševa-Popstojanova, K.,Trivedi, K.S.(2001).Architecture-based approach to reliability assessment of software systems.Performance Evaluation,45(2-3),179-204.
  12. Grefenstette, J.J.(1986).Optimization of control parameters for genetic algorithms.IEEE Transactions on systems, man, and cybernetics,16(1),122-128.
  13. Iyoob, I. M.,Cassady, C.R.,Pohl, E.A.(2006).Establishing maintenance resource levels using selective maintenance.The Engineering Economist,51(2),99-114.
  14. Karafotias, G.,Hoogendoorn, M.,Eiben, Á.E.(2014).Parameter control in evolutionary algorithms: Trends and challenges.IEEE Transactions on Evolutionary Computation,19(2),167-187.
  15. Khatab, A.,Ait-Kadi, D.,Artiba, A.(2008).Optimization of selective maintenance for multi-missions series-parallel systems.Proceedings of the International Conference, MOSIM'08,Paris, France:
  16. Khatab, A.,Dahane, M.,Ait-Kadi, D.(2013).Genetic algorithm for selective maintenance optimization of multi-mission oriented systems.Annual European Safety and Reliability (ESREL) Conference,Amsterdam, the Netherlands:
  17. Lai, C.-M.,Yeh, W.-C.(2016).Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system.Reliability Engineering & System Safety,156,148-158.
  18. Lai, C.-M.,Yeh, W.-C.,Huang, Y.-C.(2017).Entropic simplified swarm optimization for the task assignment problem.Applied Soft Computing,58,115-127.
  19. Lin, H.,Ferber, M.(2002).Mechanical reliability evaluation of silicon nitride ceramic components after exposure in industrial gas turbines.Journal of the European Ceramic Society,22(14-15),2789-2797.
  20. Maillart, L.M.,Cassady, C.R.,Rainwater, C.,Schneider, K.(2009).Selective maintenance decision-making over extended planning horizons.IEEE Transactions on Reliability,58(3),462-469.
  21. Rice, W.,Cassady, C.,Nachlas, J.(1998).ptimal maintenance plans under limited maintenance time.Proeedings of the seventh industrial engineering research conference
  22. Smith, A.E.,Coit, D.W.(1997).Penalty functions.Handbook of evolutionary computation,97(1),C5.
  23. Trelea, I.C.(2003).The particle swarm optimization algorithm: convergence analysis and parameter selection.Information processing letters,85(6),317-325.
  24. Yang, K.,Kapur, K.C.(1997).Customer driven reliability: integration of QFD and robust design.Annual Reliability and Maintainability Symposium
  25. Yeh, W.-C.(2009).A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems.Expert Systems with Applications,36(5),9192-9200.
  26. Yeh, W.-C.(2014).Orthogonal simplified swarm optimization for the series-parallel redundancy allocation problem with a mix of components.Knowledge-Based Systems,64,1-12.
  27. Yeh, W.-C.(2012).Simplified swarm optimization in disassembly sequencing problems with learning effects.Computers & Operations Research,39(9),2168-2177.
  28. Yeh, W.-C.,Yeh, Y.-M.,Chang, P.-C.,Ke, Y.-C.,Chung, V.(2014).Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization.International Journal of Electrical Power & Energy Systems,55,741-748.
  29. Zhu, H.,Liu, F.,Shao, X.,Liu, Q.,Deng, Y.(2011).A cost‐based selective maintenance decision ‐ making method for machining line.Quality and Reliability Engineering International,27(2),191-201.
  30. Zuo, M.,Tian, Z.,Huang, H.-Z.(2007).An efficient method for reliability evaluation of multistate networks given all minimal path vectors.IIE transactions,39(8),811-817.