参考文献
|
-
Buda, M.,Maki, A.,Mazurowski, M. A.(2018).A systematic study of the class imbalance problem in convolutional neural networks.Neural Networks,106,249-259.
-
Chen, L.,Wang, Y.,Li, H.(2022).Enhancement of DNN-based multilabel classification by grouping labels based on data imbalance and label correlation.Pattern Recognition,132,108964.
-
Fernández, A.,López, V.,Galar, M.,del Jesus, M. J.,Herrera, F.(2013).Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches.Knowledge-Based Systems,42,97-110.
-
Goodfellow, I.,Pouget-Abadie, J.,Mirza, M.,Xu, B.,Warde-Farley, D.,Ozair, S.,Courville, A.,Bengio, Y.(2014).Generative adversarial nets.Advances in neural information processing systems
-
Gulrajani, I.,Ahmed, F.,Arjovsky, M.,Dumoulin, V.,Courville, A. C.(2017).Improved training of wasserstein gans.Advances in neural information processing systems
-
Hassan, A. U.,Memon, I.,Choi, J.(2023).Real-time high quality font generation with Conditional Font GAN.Expert Systems with Applications,213,118907.
-
Heusel, M.,Ramsauer, H.,Unterthiner, T.,Nessler, B.,Hochreiter, S.(2017).Gans trained by a two time-scale update rule converge to a local nash equilibrium.Advances in neural information processing systems
-
Kim, C.,Park, S.,Hwang, H. J.(2022).Local Stability of Wasserstein GANs With Abstract Gradient Penalty.IEEE Transactions on Neural Networks and Learning Systems,33(9),4527-4537.
-
Kim, D.,Byun, J.(2022).Selection of Augmented Data for Overcoming the Imbalance Problem in Facies Classification.IEEE Geoscience and Remote Sensing Letters,19,1-5.
-
Li, J.,Chen, Z.,Cheng, L.,Liu, X.(2022).Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks.Energy,257,124694.
-
Li, L.,Jiang, Z.,Li, Y.(2021).Surface Defect Detection Algorithm of Aluminum Based on Improved Faster RCNN.2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)
-
Li, M.,Wang, H.,Wan, Z.(2022).Surface defect detection of steel strips based on improved YOLOv4.Computers and Electrical Engineering,102,108208.
-
Li, T.,Xing, L.,Fan, H.,Zhu, H.(2022).Surface Defect Detection of Aluminum Material based on Deep Learning.2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA)
-
Liu, Q.,Ma, G.,Cheng, C.(2020).Data Fusion Generative Adversarial Network for Multi-Class Imbalanced Fault Diagnosis of Rotating Machinery.IEEE Access,8,70111-70124.
-
Lu, Y. W.,Liu, K. L.,Hsu, C. Y.(2019).Conditional Generative Adversarial Network for Defect Classification with Class Imbalance.2019 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE)
-
Lv, X.,Duan, F.,Jiang, J.-j.,Fu, X.,Gan, L.(2020).Deep Metallic Surface Defect Detection: The New Benchmark and Detection Network.Sensors,20(6),1562.
-
Mordia, R.,Kumar Verma, A.(2022).Visual techniques for defects detection in steel products: A comparative study.Engineering Failure Analysis,134,106047.
-
Park, S. H.,Ha, Y. G.(2014).Large Imbalance Data Classification Based on MapReduce for Traffic Accident Prediction.2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing
-
Redmon, J.,Divvala, S.,Girshick, R.,Farhadi, A.(2016).You only look once: Unified, real-time object detection.Proceedings of the IEEE conference on computer vision and pattern recognition
-
Shorten, C.,Khoshgoftaar, T. M.(2019).A survey on Image Data Augmentation for Deep Learning.Journal of Big Data,6(1),60.
-
Su, Z.,Han, K.,Song, W.,Ning, K.(2022).Railway fastener defect detection based on improved YOLOv5 algorithm.2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)
-
Ultralytics. (2020). “YOLOv5,” from: May 31 2020,https://reurl.cc/MRjyLp
-
Wang, H.,Li, M.,Wan, Z.(2022).Rail surface defect detection based on improved Mask R-CNN.Computers and Electrical Engineering,102,108269.
-
Wu, Z.,Zhang, D.,Shao, Y.,Zhang, X.,Zhang, X.,Feng, Y.,Cui, P.(2021).Using YOLOv5 for Garbage Classification.2021 4th International Conference on Pattern Recognition and Artificial Intelligence (PRAI)
-
Xing, Z.,Zhang, Z.,Yao, X.,Qin, Y.,Jia, L.(2022).Rail wheel tread defect detection using improved YOLOv3.Measurement,203,111959.
-
Yang, Q.,Yan, P.,Zhang, Y.,Yu, H.,Shi, Y.,Mou, X.,Kalra, M. K.,Zhang, Y.,Sun, L.,Wang, G.(2018).Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.IEEE Transactions on Medical Imaging,37(6),1348-1357.
-
Yeung, C. C.,Lam, K. M.(2022).Efficient Fused-Attention Model for Steel Surface Defect Detection.IEEE Transactions on Instrumentation and Measurement,71,1-11.
-
Zhu, R.,Guo, Y.,Xue, J.-H.(2020).Adjusting the imbalance ratio by the dimensionality of imbalanced data.Pattern Recognition Letters,133,217-223.
-
劉佳佩 (2021). “受惠全球經濟復甦,鋼鐵出口可望結束連續 2年負成長,” 2021年 10月 5 日, 取自 https://reurl.cc/ZXVWWA
|