题名

整合LSTM及去噪自編碼器於刀具磨耗之預測

并列篇名

Integrating LSTM and Denoising Autoencoder in Tool Wear Prediction

DOI

10.6459/JCM.202309_20(2).0003

作者

李鴻庭(H. T. Lee);呂明山(M. S. Lu)

关键词

銑刀磨耗預測 ; 快速傅立葉轉換 ; 自動編碼器 ; LSTM ; Milling Cutter Wear Prediction ; Fast Fourier Transform ; Autoencoder ; LSTM

期刊名称

危機管理學刊

卷期/出版年月

20卷2期(2023 / 09 / 01)

页次

23 - 32

内容语文

繁體中文;英文

中文摘要

銑銷加工是製造業常見的加工技術之一,業界對於銑削加工的平面經常有精度上的要求,銑刀的磨耗程度自然也成為了影響加工精度的主要因素。本研究援引了PHM2010大數據競賽提供的銑刀磨耗資料集,收集了銑刀的磨耗值與各個傳感器偵測的震動數據,透過快速傅立葉轉換(FFT)與濾波過濾較不重要之雜訊並接續後面的單/雙向網路LSTM預測銑刀磨耗值,而實驗結果也表明,本研究提出的LSTM-DAE能有效提取特徵,供後續模型進行訓練,且雙向LSTM的表現要優於單向LSTM。

英文摘要

Milling is one of the common processing technologies in the manufacturing industry. The industry often has precision requirements for the plane of milling. The degree of wear of the milling cutter naturally becomes the main factor affecting the machining accuracy. This study cites the milling cutter wear data set provided by the PHM2010 big data competition. The wear value of the milling cutter and the vibration data detected by each sensor are collected, and the less important noise is filtered through fast Fourier transform (FFT) and filtering. The following unidirectional/bidirectional network LSTM predicts the wear value of the milling cutter, and the experimental results also show that the LSTM-DAE proposed in this study can effectively extract features for subsequent model training, and the performance of the bidirectional LSTM is better than that of the unidirectional LSTM.

主题分类 社會科學 > 管理學
参考文献
  1. Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components.IEEE Transactions on Systems, Man, and Cybernetics: Systems,48(1),11-20.
  2. Bingjie, H.,Wei, N.,Jichao, W.(2021).An Improved Similarity-based Prognostics Method for Remaining Useful Life Estimation of Aero-Engine.2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall)
  3. Chen, D.,Zhang, J.,Jiang, S.(2020).Forecasting the Short-Term Metro Ridership With Seasonal and Trend Decomposition Using Loess and LSTM Neural Networks.IEEE Access,8,91181-91187.
  4. Fang, Z.,Jia, T.,Chen, Q.,Xu, M.,Yuan, X.,Wu, C.(2018).Laser stripe image denoising using convolutional autoencoder.Results in Physics,11,96-104.
  5. Lee, J. E.,Jiang, J. R.(2019).Time Series Multi-Channel Convolutional Neural Network for Bearing Remaining Useful Life Estimation.2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)
  6. Liu, Z.,Jia, Z.,Vong, C. M.,Han, J.,Yan, C.,Pecht, M.(2018).A Patent Analysis of Prognostics and Health Management (PHM) Innovations for Electrical Systems.IEEE Access,6,18088-18107.
  7. Prihatno, A. T.,Nurcahyanto, H.,Ahmed, M. F.,Rahman, M. H.,Alam, M. M.,Jang, Y. M.(2021).Forecasting PM2.5 Concentration Using a Single-Dense Layer BiLSTM Method.Electronics,10(15),1808.
  8. Sayyad, S.,Kumar, S.,Bongale, A.,Kamat, P.,Patil, S.,Kotecha, K.(2021).Data-Driven Remaining Useful Life Estimation for Milling Process: Sensors, Algorithms, Datasets, and Future Directions.IEEE Access,9,110255-110286.
  9. Srivastava, N.(2015).Unsupervised learning of video representations using LSTMs.Proceedings of the 32nd International Conference on International Conference on Machine Learning,Lille, France:
  10. Tong, X.,Wang, J.,Zhang, C.,Wu, T.,Wang, H.,Wang, Y.(2022).LS-LSTM-AE: Power load forecasting via Long-Short series features and LSTM-Autoencoder.Energy Reports,8,596-603.
  11. Wang, J.,Yan, J.,Li, C.,Gao, R. X.,Zhao, R.(2019).Deep heterogeneous GRU model for predictive analytics in smart manufacturing: Application to tool wear prediction.Computers in Industry,111,1-14.
  12. Zhang, N.,Chen, E.,Wu, Y.,Guo, B.,Jiang, Z.,Wu, F.(2022).A novel hybrid model integrating residual structure and bi-directional long short-term memory network for tool wear monitoring.The International Journal of Advanced Manufacturing Technology,120(9),6707-6722.
  13. Zhao, R.,Wang, D.,Yan, R.,Mao, K.,Shen, F.,Wang, J.(2018).Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks.IEEE Transactions on Industrial Electronics,65(2),1539-1548.
  14. Zhao, R.,Yan, R.,Wang, J.,Mao, K.(2017).Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.Sensors,17(2)