题名

有效率探勘旅遊景點最適性之消費者

并列篇名

Efficiently Mining the Most Adaptive Consumers of Visiting Spots

DOI

10.6572/JHHE.1(2).3

作者

陳垂呈(Chui-Cheng Chen)

关键词

資料探勘 ; 關聯規則 ; 旅遊景點 ; 適性化 ; data mining ; association rules ; visiting spots ; adaptive

期刊名称

餐旅暨家政學刊

卷期/出版年月

1卷2期(2004 / 12 / 01)

页次

163 - 173

内容语文

繁體中文

中文摘要

藉由資訊技術的支援,企業可以更輕易地蒐集到消費者的個人資料及旅遊過的景點資料,從這些快速累積的資料中,找出對旅遊業者有用的資訊與知識,即成爲旅遊業者重要的問題之一。在本篇論文中,我們以消費者之個人特徵資料、及旅遊過之景點資料爲探勘的資料來源,分別設計兩個方法來探勘旅遊景點最適性之消費者:首先,我們修改Apriori演算法探勘個人特徵與景點之間的關聯規則,藉由關聯規則所顯示出的旅遊傾向,來發掘旅遊景點最適性之消費者。再者,我們以某一旅遊景點爲探勘目標,修改前一方法來發掘此一旅遊景點最適性的消費者。從實驗評估中顯示,我們所提出之演算法可以較快速地找出所要的關聯規則。

英文摘要

With the support of information technology, an enterprise can easily collect data from both consumers' personal characteristics and visiting spots. How to discover the useful information and knowledge for travel agencies is one of the most important issues from the rapidly accumulated data. In this paper, we use consumers' personal characteristics and visiting spots as the source data of mining, and propose two methods to discover the most adaptive consumers of visiting spots. First, we modify the Apriori algorithm to mine association rules between personal characteristics and spots. According to the traveling inclination of the association rules, we can find the most adaptive consumers of the visiting spots. Moreover, we discuss one visiting spot as the target of mining, and modify the front method to find the most adaptive consumers of the visiting spot. The experiments show that the performances of both methods are faster than the modified algorithms for mining the association rules, respectively.

主题分类 人文學 > 地理及區域研究
生物農學 > 農產加工
社會科學 > 管理學
参考文献
  1. Agrawal, R.,Imielinski, T.,Swami, A.(1993).Mining Association Rules between Sets of Items in Very Large Database.Proceedings of the ACM SIGMOD Conference on Management of Data
  2. Agrawal, R.,Srikant, R.(1994).Fast Algorithms for Mining Association Rules in Large Database.Proceedings of the 20th International Conference on Very Large Data Bases
  3. Berry, M. J. A.,Linoff, G.(1997).Data Mining Techniques for Marketing, Sales, and Customer Support.New York:John Wiley.
  4. Chang, Kai-Yuan.(2000).Institute of Business Administration, National Taipei University.
  5. Chen, Chao-Nan.(2000).Institute of Computer Science and Information Engineering, National Yunlin University of Science and Technology.
  6. Chen, M. S.,Han, J.,Yu, P. S.(1996).Data Mining: an Overview from a Database Perspective.IEEE Trans. on Knowledge and Data Engineering,8(6),866-883.
  7. Han, J.,Kamber, M.(2000).Data Mining: Concepts and Techniques.Morgan Kaufmann.
  8. Ma, Hui-Ling.(2003).Institute of Architecture and Urban Planning, Feng Chia University.
  9. Shiue, Ju-Jian.(2002).Institute of Production System Engineering and Management, National Taipei University of Technology.
被引用次数
  1. 鍾碧姮、鄭光遠、張德儀、翁振益、林雅藝(2006)。資料探勘技術應用於航空業顧客再搭意願區隔與服務滿意項目組合之分析。觀光研究學報,12(2),139-154。