题名

限磷條件下添加葡萄糖與第二碳源丙酸鈉對連續式發酵生產PHB和PHBV之影響

并列篇名

Effect of the Addition of Glucose and Sodium Propionate as the Second Carbon Source on Continuous Production of Polyhydroxybutyrate and Poly- (hydroxybutyrate-co-hydroxyvalerate) under a Phosphorus-Limited Condition

作者

李志韋(ZHI-WEI LI);吳淑姿(SHWU-TZY WU);余世宗(SHIH-TSUNG YU)

关键词

PHBV ; Ralstonia eutropha ; 限磷條件 ; 連續式發酵 ; 丙酸鈉 ; 稀釋速率 ; PHBV ; Ralstonia eutropha ; phosphorus-limited condition ; continuous fermentation ; sodium propionate ; dilution rate

期刊名称

科學與工程技術期刊

卷期/出版年月

14卷2期(2018 / 09 / 01)

页次

57 - 66

内容语文

繁體中文

中文摘要

本研究於限磷條件下,探討添加葡萄糖和第二碳源丙酸鈉於不同稀釋速率對Ralstonia eutropha菌體生質量、PHB(poly-hydroxybutyrate)、PHBV(poly- (hydroxybutyrate-co-hydroxy-valerate))生合成量及PHBV於菌體中含量之影響。以3 L之發酵槽進行發酵培養,發酵初期採批次發酵培養,待菌體生長至對數生長期(exponential phase),轉換為連續式發酵培養。以葡萄糖為碳源之培養,降低稀釋速率,菌體生質量、PHB生合成量、PHB於菌體中含量有先增加而後減少的趨勢。菌體生質量以稀釋速率為0.101 h^(-1)達最高7.31 g/L,PHB生合成量和PHB於菌體中含量以稀釋速率為0.151 h^(-1)達最高分別為1.97 g/L和27.9%。葡萄糖平均消耗速率以稀釋速率為0.151 h^(-1)達最高3.04 g/L.h,表示於此稀釋速率下,培養液提供足夠碳源以生合成菌體與PHB。稀釋速率再下降,饋料流速下降,碳源提供量減少,PHB生合成量及PHB於菌體中含量均降低。以葡萄糖為碳源並添加丙酸為第二碳源之培養,降低稀釋速率,菌體生質量、PHBV生合成量、PHBV於菌體中含量、HV(hydroxyvalerate)於PHBV中含量有先增加而後減少的趨勢。稀釋速率為0.0531 h^(-1)時,平均菌體生質量達最高6.70 g/L。稀釋速率為0.0851 h^(-1)時,PHBV生合成量、PHBV於菌體中含量、HV於PHBV中含量達最高,分別為1.90g/L、29.4%、10.5%。菌體產率以稀釋速率為0.165 h^(-1)時達最高0.804 g/L.h。HB(hydroxybutyrate)與PHBV產率以稀釋速率為0.0851 h^(-1)達最高,分別為0.145和0.162 g/L.h。HB、HV和PHBV於淨菌體中含量,以稀釋速率為0.0851 h^(-1)時達最高,表示稀釋速率為0.0851 h^(-1)、饋料流速為110.7 mL/h時,提供足夠碳源以合成HB和HV。稀釋速率下降為0.0531 h^(-1)時、饋料流速為69.0 mL/h時,饋料流速較慢,無法提供足夠碳源以合成HB和HV,因而HB、HV、PHBV於淨菌體中含量下降。

英文摘要

This study investigated the effects of glucose and sodium propionate supplementation (as the second carbon source) on the bacterial biomass, polyhydroxybutyrate (PHB) and poly- (hydroxybutyrate-co-hydroxyvalerat) (PHBV) synthesis, and PHBV content in Ralstonia eutropha under phosphorus-limited conditions. Fermentation was performed in a 3-L fermenter. Batch fermentation was conducted in the initial phase, followed by continuous fermentation in the exponential phase. In the culture containing glucose as the carbon source, the biomass of bacteria, the amount of PHB biosynthesis, and the content of PHB in cells initially increased and then decreased when the dilution rate was decreased. The highest biomass of 7.31 g/L was obtained at a dilution rate of 0.101 h^(-1). The highest amount of PHB biosynthesis and the highest content of PHBV in cells were 1.97 g/L and 27.9%, respectively, which were obtained at a dilution rate of 0.151 h^(-1). The highest average glucose consumption rate of 3.04 g/L.h obtained at a dilution rate of 0.151 h^(-1) provided adequate carbon content for microbial growth and PHB synthesis. A decrease in the dilution rate resulted in the reduction of the flow rate of feed, supply of the carbon source, amount of PHB biosynthesis, and content of PHB in bacteria. When glucose was used as the carbon source, sodium propionate was added as the second carbon source, and the dilution rate was reduced, the biomass, PHBV synthesis, PHBV content in cells, and hydroxyvalerate (HV) content in PHBV increased and then decreased. When the dilution rate was 0.0531 h^(-1), the average biomass was 6.70 g/L. At a dilution rate of 0.0851 h^(-1), the PHBV synthesis, PHBV content in cells, and HV content in PHBV were the highest (1.90 g/L, 29.4%, and 10.5%, respectively). The cell yield coefficient was 0.804 g/L.h at a dilution rate of 0.165 h^(-1). The yield coefficients of HB (hydroxybutyrate) and PHBV were the highest (0.145 and 0.162 g/L.h, respectively) at a dilution rate of 0.0851 h^(-1). The contents of HB, HV, and PHBV in the residual biomass were the highest when the dilution rate was 0.0851 h^(-1), indicating that a dilution rate of 0.0851 h^(-1), a feed flow rate of 110.7 mL/h, and an adequate carbon source were provided to synthesize HB and HV. The low feed flow rate of 69.0 mL/h at a dilution rate of 0.0531 h^(-1) could not provide an adequate carbon content for the synthesis of HB and HV.

主题分类 醫藥衛生 > 醫藥總論
醫藥衛生 > 基礎醫學
工程學 > 工程學綜合
社會科學 > 社會科學綜合
社會科學 > 心理學
参考文献
  1. Alias, Z.,Tan, I. K. P.(2005).Isolation of palm oil-utilizing: polyhydroxyalkanoate (PHA)-producing bacteria by an enrichment technique.Bioresource Technology,96,1229-1234.
  2. Anderson, A. J.,Dawes, E. A.(1990).Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.Microbiology Reviews,54,450-472.
  3. Aramvash, A.,Hajizadeh-Turchi, S.,Moazzeni-zavareh, F.,Gholami-Banadkuki, N.,Malek-sabet, N.,Akbari-Shahabi, Z.(2016).Effective enhancement of hydroxyvalerate content of PHBV in Cupriavidus necator and its characterization.International Journal of Biological Macromolecules,87,397-404.
  4. Arcos-Hernandez, M. V.,Laycock, B.,Pratt, S.,Donose, B. C.,Nikoli, A. L.,Luckman, P.,Werker, A.,Lant, P. A.(2012).Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV).Polymer Degradation and Stability,97,2301-2312.
  5. Berezina, N.,Yada, B.(2016).Improvement of the poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) production by dual feeding with levulinic acid and sodium propionate in Cupriavidus necator.New Biotechnology,1,231-236.
  6. Carli, L. N.,Crespo, J. S.,Mauler, R. S.(2011).PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties.Composites Part A-Applied Science,42,1601-1608.
  7. Choi J. I.,Lee, S.Y.(1999).High-level production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli.Applied and Environmental Microbiology,65,4363-4368.
  8. Doi, Y.,Kunioka, M.,Nakamura, Y.,Soga, K.(1987).Biosynthesis of copolyesters in Alcaligenes eutrophus H16 from 13C-labeled acetate and propionate.Macromolecules,20,2988-2991.
  9. Du, G.,Chen, J.,Yu, J.,Lun, S.(2001).Kinetic studies on poly-3-hydroxybutyrate formation by Ralstonia eutropha in a two-stage continuous culture system.Process Biochemistry,37,219-227.
  10. Gogotov, I. N.,Gerasin, V. A.,Knyazev, Y. V.,Antipov, E. M.(2010).Composite biodegradable materials based on polyhydroxyalkanoate.Applied Microbiology and Biotechnology,46,659-665.
  11. Hazenberg, P. H.,Witholt, B.(1993).Continuous production of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans in a high-cell-density, two-liquid-phase chemostate.Enzyme and Microbial Technology,15,311-316.
  12. Hu, W. F.,Sin, S. N.,Chua, H.,Yu, P. H. F.(2005).Synthesis of polyhydroxyalkanoate (PHA) from excess activated sludge under various oxidation-reduction potentials (ORP) by using acetate and propionate as carbon sources.Applied biochemistry and biotechnology,121,289-301.
  13. Keenan, T. M.,Tanenbaum, S. W.,Stipanovic, A. J.,Nakas, J. P.(2004).Production and characterisation of poly-β-hydroxyalkanoate copolymers from Burkholderia cepacia utilizing xylose and levulinic acid.Biotechnology Progress,20,1697-1704.
  14. Ray, S.,Prajapati, V.,Patel, K.,Trivedi, U.(2016).Optimization and characterization of PHA from isolate Pannonibacter phragmitetus ERC8 using glycerol waste.International Journal of Biological Macromolecules,86,741-749.
  15. Richards, E.,Rizvi, R.,Chow, A.,Naguib, H.(2008).Biodegradable composite foams of PLA and PHBV using subcritical CO2.Journal of Polymers and the Environment,16,258-266.
  16. Shang, L.,Yim, S. C.,Chang, P.(2004).Sequential feeding of glucose and valerate in a fed-batch culture of Ralstonia eutropha for production of poly(hydroxybutyrate-co-hydroxyvalerate) with high 3-hydroxyvalerate fraction.Biotechnology Progress,20,140-144.
  17. Sheu, D. S.,Chen, W. M.,Yang, J. Y.,Chang, R. C.(2009).Thermophilic bacterium Caldimonas taiwanesis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate ascarbone sources.Enzyme and Microbial Technology,44,289-294.
  18. Yu, S. T.,Lin, C. C.,Too, J. R.(2005).PHBV production by Ralstonia eutropha in a continuous stirred tank reactor.Process Biochemistry,40,2729-2734.
  19. Zhao, Q.,Wang, S. F.,Kong, M. M.,Geng, W. T.,Li, R. K. Y.,Song, C. J.(2012).Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends.Journal of Biomedical Materials Research Part B,100B,23-31.
  20. 王奕隆(1998)。大葉大學生物產業科技學系。
  21. 王進坤,柯文慶,洪瑞良,陳重文,盧榮錦,賴茲漢(2002).食品營養儀器分析.台中:富林出版社.
  22. 陳建璋(2004)。大葉大學生物產業科技學系。
被引用次数
  1. 李志韋,吳淑姿,余世宗(2020)。以葡萄糖與戊酸鈉為碳源於限磷條件下連續發酵培養Ralstonia eutropha生合成PHBV之探討。科學與工程技術期刊,16(1),1-9。