题名

微生物轉換甘蔗汁以生產聚醣及聚酯化合物

并列篇名

Microbial Conversion of Sugarcane Juice for the Production of Polyfructan and Polyester

作者

吳芳禎(FANG-CHEN WU);李偉碩(WE-SOE LI);施英隆(ING-LUNG SHIH)

关键词

甘蔗汁 ; 菌果聚醣 ; 聚羥基烷基酯 ; Sugarcane juice ; Levan ; Polyhydroxyalkanoates

期刊名称

科學與工程技術期刊

卷期/出版年月

15卷1期(2019 / 03 / 01)

页次

63 - 72

内容语文

繁體中文

中文摘要

近幾年來由於全球暖化、環保意識抬頭、化石燃料之即將用罄與原油價格日漸提升,使得尋找經濟、有效、能永續之替代能源與可再生利用之生質原料以取代傳統石化原料已是追求永續發展之重要課題。以微生物發酵生成之高分子具功能性、生物相容與生物可分解性,是一種非石化資源相關之再生材料(生態材料),因此近年來極受重視並已於食品、化妝品、醫藥及環保等領域之應用。結合生質精煉技術與再生性生質原料為基礎以開發生物高分子材料不但可解決環境問題,同時可生產高經濟價值之產品,如此對環境友善之綠色製程,值得開發。本研究探討以甘蔗汁為基質並以納豆菌(Bacillus subtilis natto)進行發酵生產菌果聚醣,探討氮源、初始pH值、溫度、轉速對其生產菌果聚醣之影響,並找出最佳生產條件。結果發現納豆菌可有效利用甘蔗汁生產菌果聚醣。納豆菌以NB培養基活化後,於不額外添加氮源之甘蔗汁培養基,轉速175rpm,溫度37℃、初始pH6.5進行搖瓶培養48h,結果顯示菌果聚醣之產量可高達18.0g/L(26%,以蔗糖消耗計)。發酵液經超過濾膜濃縮後可得純化之菌果聚醣,而其過濾液中含葡萄糖(約55g/L)與果糖(約40g/L)。以過濾液作為Cupriavidus necator生產聚酯化合物之碳源並探討初始pH值、溫度、轉速對其生產PHA之影響,以尋找出最佳生產條件。結果發現C.necator以NB培養基活化後,於含碳源之過濾液培養基,轉速200rpm,溫度30℃、初始pH7.0進行搖瓶培養48h,結果顯示可得菌體生質量12.02g/L,PHA濃度為1.60g/L,PHA含量為13.30wt%。

英文摘要

As fossil fuel supplies dwindle and environmental awareness rises, the biorefinery process has emerged as the most promising method for the production of alternatives to fossil fuels and traditional, oil-based chemicals. In particular, the microbial conversion of biomass for biopolymer production is attractive because of the substantial demand for degradable biopolymers and wide availability of renewable biomass feedstock. Microbial biopolymers are biodegradable, edible, biocompatible, and nontoxic for humans and the environment; they do not rely on oil resources; and their applications are versatile, safe, and environmentally friendly. Microbial biopolymers offer a variety of industrial applications in the fields of cosmetics, foods, pharmaceuticals, and the environment. The purpose of this study is to investigate the feasibility of a tandem production of two invaluable biopolymers, levan and polyhydroxyalkanoates(PHA), by using microbial fermentation with sugarcane juice as a feedstock. In the first section of the study, factors affecting levan production by fermentation of Bacillus subtilis(natto)Takahashi in a medium containing sugarcane juice were studied. The highest yield of levan production(18.0 g/L at 24 h; 26.0% by sucrose consumption)was obtained when the bacteria were cultured in a medium containing sugarcane juice(with 78 g/L sucrose)at a pH of 6.5, temperature of 37°C, and agitation speed of 175 rpm. The fermentation broth was concentrated using ultrafiltration membranes. The levan was harvested from the concentrate through precipitation by adding 4 volumes of cold ethanol; the filtrate containing glucose(~55 g/L)and fructose(~40 g/L) was proven to be a suitable substrate for the production of PHA by Cupriavidus necator. In the second section of the study, the factors affecting PHA production by fermentation of C. necator in a medium containing waste filtrate from levan fermentation were studied. The highest yield of PHA production (1.60 g/L; 13.30 wt%)was obtained when the bacteria were cultured in the medium for 48 h at a pH of 7.0, temperature of 30°C, and agitation speed of 200 rpm.

主题分类 醫藥衛生 > 醫藥總論
醫藥衛生 > 基礎醫學
工程學 > 工程學綜合
社會科學 > 社會科學綜合
社會科學 > 心理學
参考文献
  1. Azizia, N.,Najafpoura, G.,Younesi, H.(2017).Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxy-butyrate (PHB) production using Cupriavidus necator.International Journal of Biological Macromolecules,101,1029-1040.
  2. Cavalheiro, J. M. B. T.,De Almeida, M. C. M. D.,Grandfils, C.,Da Fonseca, M. M. R.(2009).Poly (3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol.Process Biochemistry,44(5),509-515.
  3. Davis, R.,Kataria, R.,Cerrone, F.,Woods, T.,Kenny, S.,O’Donovan, A.,Guzik, M.,Shaikh, H.,Duane, G.,Gupta, V.K.,Tuohy, M. G.,Padamatti, R. B.,Casey, E.,O’Connor, K. E.(2013).Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains.Bioresource Technology,150,202-209.
  4. De Jong, E.,Higson, A.,Walsh, P.,Wellisch, M.(2012).Product developments in the bio-based chemicals arena.Biofuels Bioproducts and Biorefining,6(6),606-624.
  5. De Oliveira, M. R.,Da Silva, R. S. S. F.,Buzato, J. B.,Celligoi, M. A. P. C.(2007).Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources.Biochemical Engineering Journal,37(2),177-183.
  6. Du, C.,Sabirova, J.,Soetaert, W.,Ki, C.,Lin, S.(2012).Polyhydroxyalkanoates production from low-cost sustainable raw materials.Current Chemical Biology,6(1),14-25.
  7. Gobina, E.(2013).Biorefinery Technologies: Global Markets.BCC.
  8. Han, Y. W.,Watson, M. A.(1992).Production of microbial levan from sucrose, sugarcane juice and beet molasses.Journal of Industrial Microbiology,9(3),257-260.
  9. Koller, M.,Bona, R.,Braunegg, G.,Hermann, C.,Horvat, P.,Kroutil, M.,Martinz, J.,Neto, J.,Pereira, L.,Varila, P.(2005).Production of polyhydroxyalkanoates from agricultural waste and surplus materials.Biomacromolecules,6(2),561-565.
  10. Murugan, P.,Gan, C. Y.,Sudesh, K.(2017).Biosynthesis of P(3HB-co-3HHx) with improved molecular weights from a mixture of palm olein and fructose by Cupriavidus necator Re2058/pCB113.International Journal of Biological Macromolecules,102,1112-1119.
  11. Nigam, P. S.,Singh, A.(2011).Production of liquid biofuels from renewable resources.Progress in Energy and Combustion Science,37(1),52-68.
  12. Passanha P.,Esteves, S. R.,Kedia, G.,Dinsdale, R. M.,Guwy, A. J.(2013).Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors.Bioresource Technology,147,345-352.
  13. Reddy M. V.,Mawatari, Y.,Onodera, R.,Nakamura, Y.,Yajima, Y.,Chang, Y.C.(2017).Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii.Bioresource Technology,234,99-105.
  14. Reddy M. V.,Mawatari, Y.,Yajima, Y.,Satoh, K.,Mohan, S. V.,Chang, Y. C.(2016).Production of poly-3-hydroxybutyrate(P3HB) and poly(3 -hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii.Bioresource Technology,215,155-162.
  15. Shih, I. L.,Shen, M. H.,Van, Y. T.(2006).Microbial synthesis of poly(ε-lysine) and its various applications.Bioresource Technology,97(9),1148-1159.
  16. Shih, I. L.,Van, Y. T.(2001).The production of poly-(gamma-glutamic acid) from microorganisms and its various applications.Bioresource Technology,79(3),207-225.
  17. Shih, I. L.,Yu, Y. T.,Shieh, C. J.,Hsieh, C. Y.(2005).Selective production and characterization of levan by Bacillus subtilus (natto) Takahashi.Journal of Agriculture and Food Chemistry,53(21),8211-8215.
  18. Silva, L.,Taciro, M.,Michelin, R. M.,Carter, J.,Pradella, J.,Gomez, J.(2004).Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate.Journal of Industrial Microbiology and Biotechnology,31(6),245-254.
  19. Werpy, T.(Ed.),Petersen, G.(Ed.)(2004).,Oak Ridge, TN.:The US DOE Office of Energy Efficiency and Renewable Energy.
  20. 施英隆(2006)。微生物生產生物高分子及其應用。化學,64(1),105-118。
  21. 張光偉(2013)。從綠色材料到藍色革命。工業材料雜誌,323,70。
  22. 廖國森(2007)。大葉大學生物產業科技學系。
  23. 顏嘉儀,余秉樺,陳博彥,魏毓宏(2010)。本土染料脫色菌生產聚羥基酯類之可行性評估。中國鑛冶工程學會會刊,212,147-156。