题名

具雙向可變形的脊椎融合器設計製作與檢測

并列篇名

Design, Manufacture, Analysis, and Testing of a Spinal Fusion Cage with a Bidirectional Expandable Design

作者

賴峯民(FENG-MIN LAI);紀昕佑(XIN-YOU JI);李瑞恆(RA-HAN LEE);黃鈺琇(YU-XIU HUANG)

关键词

3D列印 ; 可變型 ; 脊椎融合器 ; Ansys分析 ; 熱處理 ; 抗彎強度 ; 3D printing ; deformable ; spinal fusion cage ; Ansys analysis ; heat treatment ; flexural strength

期刊名称

科學與工程技術期刊

卷期/出版年月

19卷1期(2023 / 03 / 01)

页次

29 - 34

内容语文

繁體中文;英文

中文摘要

本文主要設計開發可變形脊椎融合器(Cage),對其進行結構設計、Ansys分析及製造,及本文探討3D列印多孔鈦合金試片之熱處理溫度對三點彎曲的抗彎強度之影響。在Cage設計製造部分,利用SolidWorks繪圖設計的Cage繪製成圖檔,接著於SolidWorks中模擬Cage運作之情形,完成後匯入CNC加工機進行列印上下面板及實心傳動元件,並將完成的元件組合成Cage成品,再測試Cage產品運作流暢度,且Cage實體量測後得知可擴展高度25%及擴展寬度17%。為了確保可變型脊椎融合器安全性,以防止受力過大而導致崩毀,對Cage施於400 N作用力的Ansys模擬分析及力學行為之研究。另外會利用3D列印多孔鈦合金試片用不同熱處理溫度做實驗,並進行三點彎曲實驗,其最適化熱處理500℃試片,經模擬分析與實驗的位移量分別為1.539 mm與1.738 mm,Ansys分析模型可證實是有分析參考價值,並證明熱處理確實可以增加試片的楊氏係數和抗彎強度。

英文摘要

This study developed a spinal fusion cage with a bidirectional expandable design and evaluated the effect of heat treatment on the flexural strength of three-dimensional (3D)-printed porous titanium alloy specimens. The cage was designed in SolidWorks and fabricated in a computer numerical control machine. Tests were conducted to evaluate the fluency of the cage. The experimental results indicated that the cage height can be increased by 25% and the width can be increased by 17%. Structural analysis in Ansys revealed that the cage can withstand 400 N. In addition, 3D-printed porous titanium alloy specimens were fabricated for use in heat treatment experiments that used three-point bending. According to the experimental results, the displacements of the test piece heated to 500 °C were 1.539 and 1.738 mm. Structural analysis results indicated that heat treatment increased the Young’s modulus and flexural strength of the test pieces.

主题分类 醫藥衛生 > 醫藥總論
醫藥衛生 > 基礎醫學
工程學 > 工程學綜合
社會科學 > 社會科學綜合
社會科學 > 心理學
参考文献
  1. Ashkan, S.,Anthony, A.(2016).Printing Technologies for Medical Applications.Trends in Molecular Medicine,22,254-265.
  2. Cheung, C. L.,Saber, N. R.(2016).Application of 3D printing in medical simulation and education.Bioengineering for Surgery,33,151-166.
  3. Hu, M. H.,Chang, C. M.,Chang, T. C.,Yang, Y. T.,Chien, C. H.,Ao, W.,Lai, F. M.(2021).Fatigue tests and fracture Behavior analysis of porous implant materials fabricated by 3D metal printing technology.Sensors and Materials,33,2397-2404.
  4. Kim, M.,Oh, S. K.,Choi., I.,Seo, D. K.,Roh, S. W.,Jeon, S. R.(2019).Clinical outcomes of posterior thoracic cage interbody fusion (PTCIF) to treat trauma and degenerative disease of the thoracic and thoracolumbar junctional spine.Journal of Clinical Neuroscience,60,117-123.
  5. Lee, Y. H.,Chung., C. J.,Wang., C. W.,Peng, Y. T.,Chang, C. H.,Chen, C. H.,Chen, Y. N.(2016).Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity.Computers in Biology and Medicine,71,35-45.
  6. Peck, J. H.,Kavlock, K. D.,Showalter, B. L.,Ferrell, B. M.,Peck, D. G.,Dmitriev, A. E.(2018).Mechanical performance of lumbar intervertebral body fusion devices: an analysis of data submitted to the food and drug administration.Journal of biomechanics,78,87-93.
  7. Santos, P. F,Niinomi, M.(2015).Microstructures, mechanical properties and cytotoxicity of low cost beta Ti–Mn alloys for biomedical applications.Acta Biomaterialia,26,366-376.
  8. Suh, P. B.,Lewis, C.,Puttlitz, C.,Mcgilvray, K. C.(2015).The influence of vertebral endplate density, cage contact area and cage modulus on the incidence of interbody cage subsidence.The Spine Journal,67,178.
  9. Yu, Y.,Li, W.,Yu, L.,Qu, H.,Niu, T.,Zhao, Y.(2020).Population-based design and 3D finite element analysis of transforaminal thoracic interbody fusion cages.Journal of Orthopaedic Translation,21,35-40.
  10. 莊永傑(2014)。臺東大學綠色科技產業碩士專班。
  11. 許培峰(2008)。國立交通大學機械工程學系。