题名

利用分類技術分析產品項目最適性之行銷組合

并列篇名

Using Classification Techniques to Analyze the Most Adaptive Marketing Mix of Products

DOI

10.6188/JEB.2007.9(2).03

作者

陳垂呈(Chui-Cheng Chen)

关键词

資料探勘 ; 分類分折 ; 交易資料 ; 行銷組合 ; Data Mining ; Classification Analysis ; Transaction Data ; Marketing Mix

期刊名称

電子商務學報

卷期/出版年月

9卷2期(2007 / 06 / 01)

页次

267 - 289

内容语文

繁體中文

中文摘要

在本篇論文中,我們以消費者之交易資料為探勘的資料來源,每一筆交易資料包含有消費者曾經購買過的產品項目與其數量,以某些產品項目為探勘的目標,並視其他的產品為分類的屬性項目,分別從以下兩方面來發掘這些產品項目最適性的行銷組合:首先,我們只考量產品項目是否出現在交易資料中,在探勘的過程中,若交易資料包含有這些產品項目的比例值達到最小關聯度,則設定交易資料與這些產品項目之間的關聯性為「高」,否則設定為「低」。我們將交易資料進行分類分析以建構出一決策樹,從所建構出的決策樹中,可以找出那些屬性項目與這些產品項目之間的關聯性高,藉此做為發掘這些產品項目最適性之行銷組合的依據。再者,我們增加考量產品項目的購買數量,在探勘的過程中,若交易資料包含有這些產品項目的比例值達到最小數量關聯度,則設定交易資料與這些產品項目之問的關聯性為「高」,否則設定為「低」。我們提出一個方法來將包含有項目數量之交易資料進行分類分析以建構出一決策樹,從所建構出的決策樹中,可以找出那些屬性項目與這些產品項目之間的關聯性高,藉此做為發掘包含有項目數量之這些產品項目最適性的行銷組合的依據。此探勘結果,對企業在擬訂產品之行銷組合的策略時,將可以提供非常有用的參考資訊。

英文摘要

In this paper, we use consumers' transaction data as the source data of mining. Each transaction data contains a consumer ever bought product items with quantity. We let some product items as the target of mining, and regard other products as attribute items for classification. We discover the most adaptive marketing mix of the product items from two aspects. First, we only consider product items whether they are contained in transaction data or not. In the mining process, we compute the percentage of transaction data contains the product items, and assign the association degree between the transaction data and the product items to be ”high” if the percentage satisfies the minimum association threshold. Otherwise, it is ”low”. We classify the transaction data to construct a decision tree, and find out the attribute items that have the association degree to be high with the product items according to the decision tree. It is the basis to discover the most adaptive marketing mix of the product items. Moreover, we extra consider product items with quantity in the transaction data. In the mining process, we compute the percentage of transaction data contains the product items, and assign the association degree between the transaction data and the product items to be ”high” if the percentage satisfies the minimum quantitative association threshold. Otherwise, it is ”low”. We propose a method to classify the transaction data with quantitative items for constructing a decision tree, and find out the attribute items that have the association degree to be high with the product items according to the decision tree. It is the basis to discover the most adaptive marketing mix with quantitative items of the product items. The results of the mining can provide very useful information to plan the strategy of marketing mix of products for the business.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 社會科學綜合
参考文献
  1. 陳彥良、凌俊青、許秉瑜(2001)。在包裹式資料庫中挖掘數量關聯規則。資訊管理學報,7(2),215-229。
    連結:
  2. Agrawal, R.,R. Srikant(1994).Fast Algorithms for Mining Association Rules.in Proceedings of the 20th International Conference on Very Large Data Bases,487-499.
  3. Agrawal, R.,T. Imielinski,A. Swami(1993).Mining Association Rules between Sets of Items in Very Large Database.Proceedings of the ACM SIGMOD Conference on Management of Data
  4. Berry, M. J. A.,G. S. Linoff(2004).Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management
  5. Breiman, L.,J. H. Friedman,R. A. Olshen,C. J. Stone(1984).Classification and Regression Trees
  6. Chen, M. S.,J. Han,P. S. Yu(1996).Data Mining: An Overview from a Database Perspective.IEEE Trans. on Knowledge and Data Engineering,8(6),866-883.
  7. Clark, P.,T. Niblett(1989).The CN2 Induction Algorithm.Machine Learning,3(4),261-283.
  8. Coenen, F.,P. Leng,S. Ahmed(2004).Data Structure for Association Rule Mining T-trees and P-trees.IEEE Transactions on Knowledge and Data Engineering,16(6),774-778.
  9. Han, J.,J. Pei,Y. Yin(2000).Mining Frequent Patterns without Candidate Generation.Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data Table of Contents
  10. Han, J.,M. Kamber(2006).Data Mining: Concepts and Techniques.Morgan Kaufmann
  11. Hartigan, J. A.(1975).Clustering Algorithms
  12. Hsu, P. Y,Y. L. Chen,C. C. Ling(2004).Algorithms for Mining Association Rules in Bag Databases.Information Sciences,166(1-4),31-47.
  13. Hui, S. C.,G. Jha(2000).Data Mining for Customer Service Support.Information and Management,38(1),1-13.
  14. Jearanaitanakij, K.(2005).Classifying Continuous Data Set by ID3 Algorithm.in Proceedings of the Fifth International Conference on Information, Communications and Signal Processing,1048-1051.
  15. Kang, W. H.,D. H. Kim,S. W. Lee(2005).mBAR: A Materialized Bitmap Based Association Rule Algorithm.Proceedings of the 21st International Conference on Data Engineering Workshops
  16. Katharina, D. C. S.,U. P. Dirk(1999).The Application of Non-Parametric Techniques to Solve Classification Problems in Complex Data Sets in Veterinary Epidemiology - An Example.Intelligent Data Analysis,3(1),23-35.
  17. Ke, Y.,I. Cheng,W. Ng(2005).MIC Framework: An Information-Theoretic Approach to Quantitative Association Rule Mining.Proceedings of the 22 International Conference on Data Engineering (ICDE '06)
  18. Konda, R.,K. P. Rajurkar(2005).A Rule Induction Algorithm for Continuous Data Using Analysis of Variance.Proceedings of the IEEE Southeast Con
  19. Lee, C. F.,T. H. Shen(2005).An FP-Split Method for Fast Association Rules Mining.Proceedings of the 3td International Conference on Information Technology: Research and Education (ITRE 2005)
  20. Mak, B.,T. Munakata(2002).Rule Extraction from Expert Heuristics: a Comparative Study of Rough Sets with Neural Networks and ID3.European Journal of Operational Research,136(1),212-229.
  21. Ohmann, C.,V. Moustakis,Q. Yang,K. Lang(1996).Evaluation of Automatic Knowledge Acquisition Techniques in the Diagnosis of Acute Abdominal Pain - Acute Abdominal Pain Study Group.Artificial Intelligence in Medicine,8(1),23-36.
  22. Park, J. S.,M. S. Chen,P. S. Yu(1997).Using a Hash-based Method with Transaction Trimming for Mining Association Rules.IEEE Transactions on Knowledge and Data Engineering,9(5),813-825.
  23. Pi, D. C.,X. L. Qin,W F. Gu,R. Cheng(2005).STBAR: A More Efficient Algorithm for Association Rule Mining.Proceedings of the International Conference on Machine Learning and Cybernetics,1529-1533.
  24. Quinlan, J. R.(1993).C4.5: Programs for Machine Learning, Morgan Kaufmann.
  25. Quinlan, J. R.(1986).Induction of Deciscion Trees.Machine learning.
  26. Rich, E.,K. Knight(1991).Learning in Neural Network
  27. Ruckert, U.,L. Richter,S. Kramer(2004).Quantitative Association Rules Based on Half-Spaces: an Optimization Approach.Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM 2004),507-510.
  28. Srikant, R.,R. Agrawal(1996).Mining Quantitative Association Rules in Large Relational Tables.Proceedings of the ACM SIGMOD Conference on Management of Data
  29. Tsai, P. S. M.,C. M. Chen(2001).Mining Quantitative Association Rules in a Large Database of Sales Transactions.Journal of Information Science and Engineering,7(4),667-681.
  30. Widrow, B.,D. E. Rumelhart,M. A. Lehr(1994).Neural Networks: Applications in Industry Business and Science.Communication of the ACM,37(3),93-105.
  31. Xu, B.(2005).Managing Customer Satisfaction in Maintenance of Software Product Family via ID3.Proceedings of International Conference on Machine Learning and Cybernetics,1820-1824.
  32. 高淑珍(2004)。國立成功大學企業管理研究所。
  33. 魏志平、董和昇(2002)。電子商務理論與實務(2版),167-205。