题名

ARIMA與適應性SVM之混合模型於股價指數預測之研究

并列篇名

A Hybrid ARIMA and Adaptive SVM Model in Forecasting Stock Market Index

DOI

10.6188/JEB.2008.10(4).02

作者

黃宇翔(Yeu-Shiang Huang);王百祿(Bai-Lu Wang)

关键词

時間序列 ; ARIMA ; 支援向量機 ; 預測 ; Time series ; ARIMA ; Support vector machine ; Forecasting

期刊名称

電子商務學報

卷期/出版年月

10卷4期(2008 / 12 / 01)

页次

1041 - 1065

内容语文

繁體中文

中文摘要

股價指數是一種高度不穩定、複雜且難以預測的時間序列資料,而時間序列的預測,傳統以統計技術為主,近來則以類神經網路技術較受重視。一般而言,自我迴歸整合移動平均(auto regression integrated moving average, ARIMA)及支援向量機(supportvector machine, SVM)分別對於線性及非線性資料之預測效能頗佳,因此資料首先經由ARIMA模型的建立,得出一個線性預測值,而由於傳統的SVM並沒有考量時間因素的影響,因此本研究調整原本固定之係數建構一隨時間遞減的動態形式之-DSVM,並以此預測由之前ARIMA模型產生之殘差項的估計值,藉由此兩模型之結合即可得到預測值,而後以實例驗證此調整後之混合模型之績效。本研究假設股價之走勢為不受非市場因素影響的隨機過程,並以美國紐約證交所道瓊工業指數過去一年的走勢為實驗資料樣本,樣本資料切割為互斥的五個均等份子集以進行交叉驗證,計算各個子集的均方差(mean square error, MSE)、絕對誤差(mean absolute error, MAE)與方向對稱性(directional symmetry, DS)等三項指標衡量效能。實驗結果發現,混合模型的預測效能及精確度,均較ARIMA、SVM與ARIMA+SVM三個簡單模型為佳,故混合模型可大幅改善預測效能,並顯著地減少預測誤差。

英文摘要

The stock market index is unstable, complicated, and unpredictable. In attempting to predict time series data, statistical methods are the major research stream in tradition, but recent years have seen increased attention to the techniques of neural networks. It has been recognized that the auto regression integrated moving average (ARIMA) and the support vector machine (SVM) perform fairly well in predicting linear and nonlinear time series data, respectively. However, the factor of time is often overlooked. In this paper, an adaptive SVM is proposed by modifying the regularized risk function in which the more recent -insensitive errors would be penalized more heavily than the older -insensitive errors. An experiment is validated to demonstrate the effectiveness of the hybrid adaptive SVM and ARIMA model. The Dow Jones industrial indexes for the past one year are used for the experiment where the data sample is divided into five exclusive partitions to proceed a five-fold cross validation. Mean square error (MSE), mean absolute error (MAE), and directional symmetry (DS) are used to examine the performance of the proposed model. The results show that the hybrid model performs better than ARIMA, SVM, and ARIMA+SVM models, and it is able to significantly improve the prediction performance and substantially decrease the prediction error.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 社會科學綜合
参考文献
  1. Angulo, C.,Parra, X.,Catala, A.(2003).K-SVCR. A support vector machine for multiclass classification.Neurocomputing,55(1-2),57-77.
  2. Boser, B. E.,Guyon, I. M.,Vapnik, V. N.(1992).A training algorithm for optimal margin classifiers.Proceedings of the fifth Annual Workshop on Computational Learning Theory
  3. Box, G. E. P.,Jenkins, G.(1970).Time Series Analysis: Forecasting and Control.San Francisco:Holden-Day.
  4. Burges, C. J. C.(1998).A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery,2,121-167.
  5. Cao, L. J.(2003).Support vector machines experts for time series forecasting.Neurocomputing,51,321-339.
  6. Cawley, G. C.,Talbot, N. L. C.(2002).Improved sparse least-squares support vector machines.Neurocomputing,48(1-4),1025-1031.
  7. Cortes, C.,Vapnik, V.(1995).Support vector networks.Machine Learning,20(3),273-297.
  8. Crouzille, C.,Lepetit, L.,Tarazi, A.(2004).Bank stock volatility, news and asymmetric information in banking an empirical investigation.Journal of Multinational Financial Management,14(4-5),443-461.
  9. Freitas, N. D.,Milo, M.,Clarkson, P.(1999).Sequential support vector machines.Proceedings of the 1999 IEEE Signal Processing Society Workshop,Madison, Wisconsin, USA:
  10. Gavrishchaka, V. V.,Ganguli, S. B.(2003).Volatility forecasting from multiscale and high-dimensional market data.Neurocomputing,55(1-2),285-305.
  11. Huang, W.,Nakamori, Y.,Wang, S. Y.(2005).Forecasting stock market movement direction with support vector machine.Computers & Operations Research,32(10),2513-2522.
  12. Ince, H.,Trafalis, T. B.(2004).Kernel principal component analysis and support vector machines for stock price prediction.Neural Networks, 2004. Proceedings. 2004 IEEE International Joint conference on,3(25-29),2053-2058.
  13. Ince, H.,Trafalis, T. B.(2006).Kernel methods for short-term portfolio management.Expert Systems with Applications,30(3),535-542.
  14. Kim, K. J.(2003).Financial time series forecasting using support vector machines.Neurocomputing,55(1-2),307-319.
  15. Kogan, L.(2004).Asset prices and real investment.Journal of Financial Economics,73(3),411-431.
  16. LeBaron, B.,Arthur, W. B.,Palmer, R.(1999).Time series properties of an artificial stock market.Journal of Economic Dynamics & Control,23(9-10),1487-1516.
  17. Li, Y.,Lin, C.,Zhang, W.(2006).Improved sparse least-squares support vector machine classifiers.Neurocomputing,69(13-15),1655-1658.
  18. Makridakis, S.,Hibon, M.(1979).Accuracy of forecasting: an empirical investigation.Journal of the Royal Statistical Society,142,97-145.
  19. Oh, K. J.,Kim, K. J.(2002).Analyzing stock market tick data using piecewise nonlinear model.Expert Systems with Applications,22(3),249-255.
  20. Pai, P. F.,Lin, C. S.(2005).A hybrid ARIMA and support vector machines model in stock price forecasting.Omega,33(6),497-505.
  21. Quah, T. S.,Srinivasan, B.(1999).Improving returns on stock investment through neural network selection.Expert Systems with Applications,17(4),295-301.
  22. Refenes, A. N.,Bentz, Y.,Bunn, D. W.,Burgess, A. N.,Zapranis, A. D.(1997).Financial time series modeling with discounted least squares backpropagation.Neurocomputing,14(2),123-138.
  23. Rojo-Alvarez, J. L.,Martinez-Ramon, M.,Prado-Cumplido, M. D.,Artes-Rodriguez, A., Figueiras-Vidal, A. R.(2004).Support vector method for robust ARMA system identification.IEEE Transactions On Signal Processing,52(1),155-164.
  24. Schmidt, M.(1996).Interface `96 Proceedings.Sydney:
  25. Scholkopf, B.,Sung, K.K.,Burges, C. J. C.,Girosi, F.,Niyogi, P.,Poggio, T.,Vapnik, V. N.(1997).Comparing support vector machines with Gaussian kernels to radial basis function classifiers.IEEE Transactions On Signal Processing,45(11),2758-2765.
  26. Suykens, J.A.K.,Brabanter, J. D.,Lukas, L.,Vandewalle, J.(2002).Weighted least squares support vector machines: Robustness and sparse approximation.Neurocomputing,48,85-105.
  27. Tay, F. E. H.,Cao, L. J.(2001).Application of support vector machines in financial time series forecasting.Omega,29,309-317.
  28. Tay, F. E. H.,Cao, L. J.(2002).Modified support vector machines in financial time series forecasting.Neurocomputing,48(1-4),847-861.
  29. Thissen, U.,Brakel, R. V.,Weijer, A. P. D.,Melssen, W. J.,Buydens, L. M. C.(2003).Using support vector machines for time series prediction.Chemometrics and Intelligent Laboratory Systems,69(1-2),35-49.
  30. Valyon, J.,Horvath, G.(2004).A sparse least squares support vector machine classifier.Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on,1(25-29),543-548.
  31. Zhang, G. P.(2003).Time series forecasting using a hybrid ARIMA and neural network model.Neurocomputing,50(1),159-175.