题名

GSSA:以階段分組排序搜尋機制探勘關聯規則之演算法

并列篇名

GSSA: A Gradation Sorting and Scanning Algorithm for Data Mining and Applications

DOI

10.6188/JEB.2009.11(3).04

作者

黃仁鵬(Jen-Peng Huang);柯柏瑄(Po-Hsuan Co)

关键词

資料探勘 ; 關聯規則 ; 資料庫分組排序 ; 階段搜尋 ; 頻繁項目集 ; data mining ; association rules ; database sorting ; gradation scanning ; frequent itemsets

期刊名称

電子商務學報

卷期/出版年月

11卷3期(2009 / 09 / 01)

页次

551 - 568

内容语文

繁體中文

中文摘要

本研究提出GSSA演算法(Gradation Sorting and Scanning Approaches)。GSSA演算法主要的特色就是資料庫分組排序的概念與階段縮減過濾機制。資料庫分組排序可減少計算支持度時需掃瞄資料庫之範圍,進而改善傳統關聯規則演算法資料庫的掃瞄方式;而階段縮減過濾機制可大量減少非頻繁項目集的數量,將可更適用於探勘交易長度較長的資料庫並且有效提昇記憶體的使用率。本研究實驗顯示本演算法在效能上優於Apriori與FP-growth演算法。

英文摘要

In this paper we propose GSSA (Gradation Sorting and Scanning Approaches), a new algorithm for mining association rules. GSSA algorithm adopts the concept of database sorting and the gradation reduction mechanisms to increase the performance. Comprehensive experiments have been conducted to assess the performance of the proposed algorithm. The experimental results show that GSSA outperforms others previously proposed algorithms under a variety of conditions.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 社會科學綜合
参考文献
  1. Huang J. P.,Lan G. C.(2006).An Efficient Algorithm for Mining Association Rules-GRA.Journal of e-Business,8(4),469-498.
    連結:
  2. Huang, J. P.,Chien, I. P.,Kuo, H. C.(2006).An Efficient Incremental Mining Algorithm-ICI.Journal of e-Business,8(3),393-413.
    連結:
  3. Huang, J. P.,Tsai, C. L.(2007).GSA: A Gradational Scanning Algorithm for Mining Association Rules.Journal of e-Business,9(4),823-845.
    連結:
  4. Agrawal, R.,Srikant, R.(1994).Fast algorithms for mining association rules.Proceedings of 1994 International Conference on Very Large Data Bases
  5. Brin, S.,Motwani, R.,Ullman, J. D.,Tsur, S.(1997).Dynamic itemset counting and implication rules for market basket data.ACM SIGMOD Conference on Management of Data
  6. Chen, X.,Li, L.,Ma, Z.,Bai, S.,Guo, F.(2006).F-Miner: A New Frequent Itemsets Mining Algorithm.IEEE International Conference on e-Business Engineering
  7. Han, J.,Pei, J.,Yin, Y.(2000).Mining Frequent Patterns without Candidate Generation.Proc. ACM SIGMOD Int. Conf. on Management of Data
  8. Huang, J. P.,Chen S. J.,Kuo, H. C.(2007).An Efficient Incremental Mining Algorithm-QSD.Intelligent Data Analysis,11(3),265-278.
  9. Huang, J. P.,Hsiung, H. C.,Kuo, H. C.(2004).Intuitional Decomposition association rule Algorithm-IDA.The 10th Conference on Information management and Implementation (CSIM 2004)
  10. Lee, C. H.,Lin, C. R.,Chen, M. S.(2001).Sliding-Window Filtering: An Efficient Algorithm for Incremental Mining.ACM CIKM.
  11. Park, J. S.,Chen, M. S.,Yu, P. S.(1995).An Effective Hash-based Algorithm for Mining Association Rules.Proc. Of the ACM SIGMOD Conference on Management of Data
  12. Tseng, F. C.,Hsu, C. C.(2001).Creating frequent patterns with the frequent pattern list.Proc. Of the Asia Pacific Conference of Data Mining and Knowledge Discovery
被引用次数
  1. 黃仁鵬(2016)。GSPT:使用前序表的高效關聯規則演算法。Electronic Commerce Studies,14(2),257-277。