题名

以社會網路與電影本體為架構之電影推薦系統

并列篇名

A Movie Recommender System based on Social Networks and Movie Ontology

DOI

10.6188/JEB.2011.13(1).09

作者

黃河銓(Ho-Chuan Huang);王群元(Chun-Yuan Wang)

关键词

推薦系統 ; 社會網路 ; 本體論 ; 信任機制 ; Recommender system ; Social network ; Ontology ; Trust mechanism

期刊名称

電子商務學報

卷期/出版年月

12卷4期(2010 / 12 / 01)

页次

595 - 620

内容语文

繁體中文

中文摘要

本研究提出結合社會網路與本體論架構之電影推薦系統,期望能透過社會網路和電影本體的整合,加強人與人、項目與項目、及人與項目之間多維度的關係,藉以輔助電影推薦服務的完整性。本研究建立電影本體,以清楚地表示各電影類型的階層屬性,藉此瞭解不同類型電影之問的關係,並利用電影類型階層和電影特徵值之概念做為推論相似電影的依據。本研究以5點式Likert問卷方式了解使用者對此系統之滿意程度,有效樣本為42份。分析結果顯示大部分的使用者對於本系統之推薦服務皆感到滿意。此外,本研究亦運用查全率(Recall)與平均絕對誤差(Mean Absolute Error, MAE)比較本系統推薦方法與傳統使用者平均評價方法兩者推薦的效能。其結果亦顯示本系統推薦方法優於傳統的平均評價方法。

英文摘要

This paper presents a movie recommendation system which integrates social networks with ontology technologies. The aim of this study is to improve the integrity for movie recommendation services by taking account of the relationships among people, association among items, as well as relationships between people and items. The establishment of movie ontology not only identified users' movie preferences and attributes with higher accuracy, but also improve the overall performance of the recommendation system. Total 42 adults were participated in this study and completed the questionnaires. The result showed that most of participants were satisfied with the recommendation services from the system. This study also employed two measures, Recall and MAE (Mean Absolute Error), to compare the proposed approach in the system with the traditional users' average ratings. The experimental result showed that the efficacy of the proposed approach was better than that in the traditional users' average ratings.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 社會科學綜合
参考文献
  1. Brickley, D. and Miller, L. (2000), The Friend of a Friend (FOAF) project. 2007, Retrieved Dec. 2008, from http://www.foaf-project.org/
  2. Avancha, S., Kallurkar, S. and Kamdar, T (2001), "Design of ontology for the Internet movie database (IMDb),"Semester Project, CMSC 771..
  3. Chandler, D. (1997), "An introduction to genre theory," Retrieved Dec. 2008, from http://www.aber.ac.uk/media/Documents/intgenre/intgenre.html
  4. Adomavicius, G.,Tuzhilin, A.(2005).Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,17(6),734-749.
  5. Anand, S. S.,Mobasher, B.(2007).Contextual Recommendation From Web to Social Web: Discovering and Deploying User and Content Profiles.
  6. Austin, B. A.,Gordon, T. F.(1987).Movie genres: Toward a conceptualized model and standardized definitions.Current Research in Film: Audiences, Economics, and Law,3,12-33.
  7. Avesani, P.,Massa, P.,Tiella, R.(2005).A trust-enhanced recommender system application: Moleskiing.Proceedings of the 20th ACM Symposium on Applied Computing 2005
  8. Balabanovi, M.,Shoham, Y.(1997).Fab: Content-based, collaborative recommendation.Communications of the ACM,40(3),66-72.
  9. Billsus, D.,Pazzani, M. J.(1998).Learning collaborative information filters.Proceedings of the 15th International Conference on Machine Learning
  10. Celma, O.(2006).Foafing the music: Bridging the semantic gap in music recommendation.5th International Semantic Web Conference
  11. De Silva, I.(1998).Consumer selection of motion pictures.Boston:The Motion Picture Mega-Industry.
  12. Frankowski, D.,Lam, S.,Sen, S.,Harper, M.,Yilek, S.,Cassano, M.(2007).Recommenders everywhere: the WikiLens community-maintained recommender system.Proceedings of the 2007 international symposium on Wikis
  13. Ganesan, P.,Garcia-Molina, H.,Widom, J.(2003).Exploiting hierarchical domain structure to compute similarity.ACM Transactions on Information Systems (ACM TOIS 2003),21(1),64-93.
  14. Golbeck, J.(2005).Personalizing applications through integration of inferred trust values in semantic Web-based social networks.Semantic Network Analysis Workshop at the 4th International Semantic Web Conference,Galway, Ireland:
  15. Golbeck, J.,Hendler, J.(2006).Film Trust: Movie recommendations using trust in Web-based social networks.3rd IEEE Consumer Communications and Networking Conference
  16. Golbeck, J.,Parsia, B.(2006).Trust network-based filtering of aggregated claims.International Journal of Metadata Semantic Ontologies,1(1),58-65.
  17. Goldberg, D.,Nichols, D.,Oki, B. M.,Terry, D.(1992).Using collaborative filtering to weave an information tapestry.Communications of the ACM,35(12),61-17.
  18. Hendler, J.,Golbeck, J.(2008).Metcalfe's law, Web 2.0, and the semantic web.Web Semantic,6(1),14-20.
  19. Herlocker, J. L.,Konstan, J. A.,Riedl, J.(2000).Explaining collaborative filtering recommendations.Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work,New York, USA:
  20. Kearney, P.,Anand, S. S.,Shapcott, M.(2005).Employing a domain ontology to gain insights into user behaviour.3rd Workshop on Intelligent Techniques for Web Personalization,Edinburgh, Scotland, UK:
  21. Krulwich, B.,Burkey, C.(1996).Learning user information interests through extraction of semantically significant phrases.Proceeding of the AAAI Spring Symposium on Machine Learning in Information Access,Stanford, CA:
  22. Lang, K.(1995).NewsWeeder: learning to filter netnews.Proceedings of the 21th International Conference on Machine Learning,San Francisco, CA:
  23. Lekakos, G.,Caravelas, P.(2008).A hybrid approach for movie recommendation.Multimedia Tools and Applications,36(1-2),55-70.
  24. Liccardi, I.,Ounnas, A.,Pau, R.,Massey, E.,Kinnunen, P.,Lewthwaite, S.(2007).The role of social networks in students' learning experiences.SIGCSE Bull,39(4),224-237.
  25. Massa, P.,Bhattacharjee, B.(2004).Using tust in recommender systems: An experimental analysis.Proceedings of the 2nd International Conference on Trust Management
  26. Massa, P.,Bhattacharjee, B.(2004).Using tust in recommender systems: An experimental analysis.Lecture Notes in Computer Science,2995,221-235.
  27. Middleton, S. E.,Shadbolt, N. R.,Roure, D. C. D.(2004).Ontological user profiling in recommender systems.ACM Transactions on Information Systems,22(1),54.
  28. Milgram, S.(1967).The small world problem.Psychology Today,2,61-67.
  29. Miller, B. N.,Albert, I.,Lam, S. K.,Konstan, J. A.,Riedl, J.(2003).MovieLens unplugged: experiences with an occasionally connected recommender system.Proceedings of the 8th International Conference on Intelligent User Interfaces,Miami, Florida, USA:
  30. O''Connor, M.,Cosley, D.,Konstan, J. A.,Riedl, J.(2001).PolyLens: A recommender system for groups of users.Proceedings of the 7th Conference on European Conference on Computer Supported Cooperative Work,Bonn, Germany:
  31. O''Donovan, J.,Smyth, B.(2005).Trust in recommender systems.Proceedings of the 10th International Conference on Intelligent User Interfaces,San Diego, California, USA:
  32. Sinha, R.,Swearingen, K.(2001).Comparing recommendations made by online systems and friends.Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries,Dublin, Ireland:
  33. Swearingen, K.,Sinha, R.(2001).Beyond algorithms: An HCI perspective on recommender systems.ACM SIGIR 2001 Workshop on Recommender Systems,New Orleans, Louisiana:
  34. Sztompka, P.(1999).Trust: A sociological theory.Cambridge:Cambridge University Press.