题名

以知識本體為基礎建構病毒分類知識系統

并列篇名

An Ontology-based Approach toward Knowledge Systems in Classification of Virus

DOI

10.6188/JEB.2011.13(4).08

作者

許通安(Tong-An Hsu);洪智力(Chih-Li Hung);黃盈豪(Ying-Hao Huang)

关键词

電腦病毒分類 ; 知識本體 ; 自我組織映射網路 ; Computer Virus Classification ; Ontology ; Self-Organizing Map

期刊名称

電子商務學報

卷期/出版年月

13卷4期(2011 / 12 / 01)

页次

817 - 840

内容语文

繁體中文

中文摘要

在網際網路時代裡,形形色色的網路應用在無地域限制下快速的發展。同時,基於某種原因,電腦病毒開發者,也將不斷開發出新型的變種電腦病毒,藉由網際網路的便利性四處散佈。當使用者遭受電腦病毒感染與威脅時,快速識別出電腦病毒的型態,並找尋相關解決方案是非常重要的。本研究提出藉由知識本體結合機器學習的創新方式,進行電腦病毒的分類,具體而言,本研究採用自我組織映射網路(self-organizing map)結合k平均法(k-means)的自動分群技術,並導入C4.5決策樹演算法以建立電腦病毒的知識階層架構。此種方式能夠以客觀的方式迅速有效的自動化塑模電腦病毒知識本體,並能透過本體規則推論找出最適合的病毒感染解決方案。

英文摘要

In the era of Internet, many varied information flows prompt a rich of usage over Internet without geographical limitation. However, for some purpose, many computer virus creators also take the benefit of Internet and make varied viruses diffuse ubiquitously on the Internet. It should be necessary to recognize the virus type and look for solutions immediately when a computer is attacked by a virus. Based on the integration of ontology learning and machine learning, this research proposes a useful solution to classify viruses to their associated categories. More specifically, we propose a novel method, which integrates self-organizing map (SOM) with K-means into C4.5 decision tree in order to objectively produce a hierarchical knowledge base for virus. Our proposed method is able to build the computer virus ontology automatically, effectively and efficiently and find the most suitable solution for an infected computer via rule inference in this computer virus ontology.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 社會科學綜合
参考文献
  1. Cai, Y.,Liu, D.(2005).Multiuser detection using the Taguchi method for DS-CDMA systems.IEEE Transactions on Wireless Communications,4(4),1594-1607.
  2. Chau, K.W.(2007).An ontology-based knowledge management system for flow and water quality modeling.Advances in Engineering Software,38(3),172-181.
  3. Chi, Y. L.(2009).A consumer-centric design approach to develop comprehensive knowledge-based systems for keyword discovery.Expert Systems with Applications,36(2),2481-2493.
  4. Deboeck, G.(1998).In Visual Explorations in Finance with Self-Organizing Maps.London:Springer-Verlag Press.
  5. Elliman, D.G.,Pulido, J.R.(2001).Automatic derivation of on-line document ontologies.Proceedings of 19th Mechanisms for Enterprise Integration, MERIT 2001,Budapest Hungary:
  6. Furey, T.S.,Cristianini, N.,Duffy, N.,Bednarski, D.W.,Schummer, M.,Haussler, D.(2000).Support vector machine classification and validation of cancer tissue samples using microarray expression data.Bioinformatics,16(10),906-914.
  7. Grossberg, S.(1987).Competitive learning: From interactive activation to adaptive resonance.Cognitive Science,11,23-63.
  8. Gruber, T.R.(1993).Translation approach to portable ontology specification.Knowledge Acquisition,5(2),199-220.
  9. Guarino, N.(1998).Formal ontology and information systems.Proceedings of 1st Formal Ontology in Information Systems Conference,Italy:
  10. Guarino, N.(1997).Understanding, building and using ontologies: A commentary to using explicit ontologies in KBS development.International Journal of Human and Computer Studies,46,293-310.
  11. Han, J.,Kamber, M.(2007).In Data Mining: Concepts and Techniques.Morgan Kaufmann Press.
  12. Honkela, T.,Kaski, S.,Lagus, K.,Kohonen, T.(1997).WEBSOM- self-organizing maps of document collections.Proceedings of Workshop on Self-Organizing Maps 1997 (WSOM'97),Espoo, Finland:
  13. Hung, C.(2009).Knowledge-based rule extraction from self-organizing maps.Lecture Notes in Computer Science,5507,139-146.
  14. Hung, C.,Tsai, C.F.(2008).Market segmentation based on hierarchical self organizing map for markets of multimedia on demand.Expert Systems with Applications,34(1),780-787.
  15. Khan, L.,Feng, L.(2002).Ontology construction for information selection.Proceedings of 14th IEEE International Conference, Tools with Artificial Intelligence,Crystal City, Virginia:
  16. Kim, D.H.,Lee, D.H.,Lee, W.D.(2006).Classifier using extended data expression.Proceedings of IEEE Mountain Workshop on Adaptive and Learning Systems
  17. Ko, A.,Vas, R.(2003).Knowledge of stealing - challenges and possibilities in knowledge modeling.Proceedings of the 25th International Conference, Information Technology Interfaces (ITI 2003)
  18. Kohonen, T.(1984).In Self Organizing and Associative Memory.Berlin:Springer-Verlag.
  19. Kong, H.,Hwang, M.,Kim, P.(2006).Design of the automatic ontology building system about the specific domain knowledge.Proceedings of the 8th International Conference, Advanced Communication Technology
  20. Laaksonen, J.,Koskela, M.,Laakso, S.,Oja, E.(2000).PicSOM - content-based image retrieval with self-organizing maps.Pattern Recognition Letters,21(13-14),1199-1207.
  21. Lau, K.W.,Wu, Q.H.(2008).Local prediction of non-linear time series using support vector regression.Pattern Recognition,41,1556-1564.
  22. Lee, C.S.,Jiang, C.C.,Hsieh, T.C.(2006).A genetic fuzzy agent using ontology model for meeting scheduling system.Information Sciences,176(9),1131-1155.
  23. Leiba, M.,Nachmias, R.(2006).A knowledge building community constructing a knowledge model using online concept maps.Proceedings of International Conference on Information Technology: Research and Education, ITRE '06
  24. León, R.V.,Shoemaker, A.C.,Kacker, R.N.(1987).Performance measures independent of adjustment: An explanation and extension of Taguchi's signal-to-noise ratios.Technometrics,29,253-285.
  25. Marianne, L.(1987).The knowledge acquisition grid: A method for training knowledge engineers.International Journal of Man-Machine Studies,26(2),245-255.
  26. Miller, G.A.(1985).WordNet: A dictionary browser.Proceedings of the First International Conference on Information in Data, University of Waterloo,Waterloo:
  27. Mizoguchi, R.(2003).Tutorial on ontological engineering - part 1: Introduction to ontological engineering.New Generation Computing,21(4),365-384.
  28. Noy, N.F.,Hafner, C.D.(1997).The state of the art in ontology design: A survey and comparative review.AI Magazine,18(3),53-74.
  29. Noy, N.F.,McGuinness, D.L.(2001).Tech Report KSL-01-05Tech Report KSL-01-05,California:Stanford KS Lab.
  30. Quinlan, J.R.(1993).In C4.5: Programs for Machine Learning.Morgan Kaufmann Press.
  31. Ruggieri, S.(2002).Efficient C4.5.IEEE Transactions on Knowledge and Data Engineering,14(4),438-444.
  32. Sie, S.H.,Yeh, J.H.(2006).Automatic ontology generation using schema information.Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence
  33. Song, M.H.,Lim, S.Y.,Kang, D.J.,Lee, S.J.(2005).Automatic classification of web pages based on the concept of domain ontology.Proceedings of Software Engineering Conference, APSEC '05
  34. Swartout, W.,Austin, T.(1999).Ontologies.IEEE Intelligent Systems,14(1),18-19.
  35. Tho, Q.T.,Hui, S.C.,Fong, A.C.M.,Cao, T.H.(2006).Automatic fuzzy ontology generation for semantic web.Knowledge and Data Engineering,18(6),842-856.
  36. Tsai, J.T.,Chou, J.H.,Liu, T.K.(2006).Optimal design of digital IIR filters by using hybrid Taguchi genetic algorithm.IEEE Transactions on Industrial Electronics,53(3),867-879.
  37. Uschold, M.,Grueninger, M.(1996).Ontologies: Principles, methods and applications.Knowledge Engineering Review,11(2),93-155.
  38. Vapnik, V.N.(1999).An overview of statistical learning theory.IEEE Transactions on Neural Networks,10(5),988-999.
  39. Weng, S.S.,Tsai, H.J.,Liu, S.C.,Hsu, C.H.(2006).Ontology construction for information classification.Expert Systems with Applications,31(1),1-12.
  40. Wermter, S.,Elshaw, M.(2003).Learning robot actions based on self-organising language memory.Neural Networks,16(5-6),691-699.
  41. Witten, I.H.,Frank, E.(2005).In Data Mining-Practical Machine Learning Tools and Techniques.Elsevier, Morgan Kaufmann Press.
  42. Wu, X.(1998).Explicit schematic information in knowledge representation and acquisition.Expert Systems with Applications,15(3-4),215-221.
  43. Zhou, W.,Liu, Z.T.,Zhao, Y.(2007).Ontology learning by clustering based on fuzzy formal concept analysis.Proceedings of 31st Annual International Computer Software and Applications Conference (COMPSAC 2007)