题名

應用深度學習技術於網路虛假評論偵測

并列篇名

Applying Deep Learning Techniques for Fake Review Detection

DOI

10.6188/JEB.201912_21(2).0004

作者

鄭麗珍(Li-Chen Cheng);江彥孟(Yan-Meng Chiang);游政憲(Cheng-Hsien Yu)

关键词

假評論 ; 文字探勘 ; 深度學習 ; Fake review ; text mining ; deep learning

期刊名称

電子商務學報

卷期/出版年月

21卷2期(2019 / 12 / 01)

页次

229 - 252

内容语文

繁體中文

中文摘要

網際網路蓬勃發展使得電子商務成為消費者重要的採購媒介。消費者為了取得商品的資訊,會到重要的購物論壇或是討論群組閱讀其他消費者的評論心得。這也使得網路的評論對消費者的採購決策有很大影響力和重要性。企業花錢聘用特定的寫手撰寫對自己有利的評論,不肖廠商更聘用寫手散播不利對手的評論。這些虛假評論會誤導消費者也會傷害商品製造商。過去研究都指出這些虛假評論真假難辨。本研究將採用深度學習技術與傳統文字探勘的技術來比較識別虛假評論的內容的效果,資料前處理用傳統與深度學習的技術,機器學習使用了多種傳統與深度學習的模型,來建構識別虛假評論的分類器,本研究實驗將使用過去學者所提出的台灣知名論壇虛假評論真實資料集。

英文摘要

E commerce becomes an important channel for consumers to purchase product. Online reviews are an important information resource for consumes before making a purchase. Users always browse online forum that are posted to share post-purchase experiences of products and services. However, the fake reviews in the online forum are harmful to consumers who might buy misrepresented products. Consumers can't identify authentic and fake reviews. This study proposed a novel framework to detect fake reviews which integrated several techniques. There are traditional text mining techniques to deal with textual data including bag-of-words, latent semantic analysis and word2vec for word representation. Next, we used machine learning to train the model to detect fake review, including SVM, deep neural network (DNN), convolutional neural network (CNN) and long short-term memory (LSTM). Finally, we evaluated the performance in a real dataset.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 社會科學綜合
参考文献
  1. Chen, Y. R.,Chen, H. H.(2015).Opinion spam detection in web forum: A real case study.Proceedings of the 24th International Conference on World Wide Web (WWW 2015),Florence, Italy:
  2. Cheng, L. C.,Tseng, J. C. R.,Chung, T. Y.(2017).Case study of fake web reviews.Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2017),Sydney, Australia:
  3. Deerwester, S.,Dumais, S. T.,Furnas, G. W.,Landauer, T. K.,Harshman, R.(1990).Indexing by latent semantic analysis.Journal of the American Society for Information Science,41(6),391-407.
  4. Dos Santos, C. N.,Gatti, M.(2014).Deep convolutional neural networks for sentiment analysis of short texts.Proceedings of the 25th International Conference on Computational Linguistics: Technical Papers (COLING 2014),Dublin, Ireland:
  5. Fischer, T.,Krauss, C.(2018).Deep learning with long short-term memory networks for financial market predictions.European Journal of Operational Research,270(2),654-669.
  6. Hinton, G. E.,Salakhutdinov, R. R.(2006).Reducing the dimensionality of data with neural networks.Science,313(5786),504-507.
  7. Jindal, N.,Liu, B.(2007).Review spam detection.Proceedings of the 16th International Conference on World Wide Web (WWW 2007),Banff, Alberta, Canada:
  8. Jindal, N.,Liu, B.(2008).Opinion spam and analysis.Proceedings of the 2008 International Conference on Web Search and Data Mining (WSDM 2008),Palo Alto, California, USA:
  9. Kalchbrenner, N.,Grefenstette, E.,Blunsom, P.(2014).,未出版
  10. LeCun, Y.,Bengio, Y.,Hinton, G.(2015).Deep learning.Nature,521(7553),436-444.
  11. LeCun, Y.,Bottou, L.,Bengio, Y.,Haffner, P.(1998).Gradient-based learning applied to document recognition.Proceedings of the IEEE,86(11),2278-2324.
  12. Liu, B.(2007).Web data mining: Exploring hyperlinks, contents, and usage data.London:Springer Science & Business Media.
  13. Lopez, M. M.,Kalita, J.(2017).,未出版
  14. Mikolov, T.,Chen, K.,Corrado, G.,Dean, J.(2013).,未出版
  15. Mukherjee, A.,Liu, B.,Glance, N.(2012).Spotting fake reviewer groups in consumer reviews.Proceedings of the 21st International Conference on World Wide Web (WWW 2012),Lyon, France:
  16. Mukherjee, A.,Venkataraman, V.,Liu, B.,Glance, N.(2013).What Yelp fake review filter might be doing?.Proceedings of the 7th International AAAI Conference on Weblogs and Social Media,Boston, Massachusetts USA:
  17. Ott, M.,Choi, Y.,Cardie, C.,Hancock, J. T.(2011).Finding deceptive opinion spam by any stretch of the imagination.Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1 (ACL-HLT 2011),Portland, Oregon, USA:
  18. Sak, H.,Senior, A.,Beaufays, F.(2014).,未出版
  19. Taigman, Y.,Yang, M.,Ranzato, M. A.,Wolf, L.(2014).Deepface: Closing the gap to human-level performance in face verification.Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (IEEE 2014),Columbus, OH, USA:
  20. Vargas, M. R.,de Lima, B. S. L. P.,Evsukoff, A. G.(2017).Deep learning for stock market prediction from financial news articles.Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA 2017),Annecy, France:
  21. Wang, C. C.,Day, M. Y.,Lin, Y. R.(2016).A real case analytics on social network of opinion spammers.Proceedings of the 2016 IEEE 17th International Conference on Information Reuse and Integration (IEEE IRI 2016),Pittsburgh, Pennsylvania, USA:
  22. Wang, G.,Xie, S.,Liu, B.,Yu, P. S.(2011).Review graph based online store review spammer detection.Proceedings of the 2011 IEEE 11th International Conference on Data Mining (ICDM 2011),Vancouver, BC, Canada:
  23. Wang, Z.(2010).Anonymity, social image, and the competition for volunteers: A case study of the online market for reviews.The B.E. Journal of Economic Analysis & Policy,10(1),1-35.
  24. Zhang, D.,Zhou, L.,Kehoe, J. L.,Kilic, I. Y.(2016).What online reviewer behaviors really matter? Effects of verbal and nonverbal behaviors on detection of fake online reviews.Journal of Management Information Systems,33(2),456-481.
被引用次数
  1. 鄭麗珍,陳詳翰,王毅(2023)。結合來源與內容之虛假資訊偵測機制。電子商務學報,25(1),63-88。
  2. (2021)。利用AI技術偵測假新聞之實證研究。中華傳播學刊,39,43-70。