题名

高斯分布鯨群演算法於最佳化問題之研究

并列篇名

A Study on the Gaussian Distribution Based Whale Optimization Algorithm for Optimization Problems

DOI

10.6188/JEB.202304_25(1).0004

作者

李俊賢(Chunshien Li);王伯倫(Po-Lun Wang)

关键词

高斯分布 ; 鯨群最佳化演算法 ; 最佳化演算法 ; 無約束型測試函數 ; 約束型測試函數 ; Gaussian distribution ; whale optimization algorithm ; optimization algorithm ; unconstrained test function ; constrained test function

期刊名称

電子商務學報

卷期/出版年月

25卷1期(2023 / 04 / 30)

页次

89 - 126

内容语文

繁體中文;英文

中文摘要

近年來機器學習在能力上有顯著提升,為人工智慧系統,例如類神經網路,帶來更佳的效能表現;這意味著計算模型的參數數量大量增加。因此具有搜尋高維度參數解的最佳化演算法之研究,越顯出其重要性。本研究提出之改良式最佳化演算法,稱為高斯分布鯨群最佳化(GD-WOA)演算法,係以兩種策略改良鯨群演算法(WOA),其一是在表現最佳的鯨魚位置建立高斯隨機分布並由此分布產生一個新位置,使之成為鯨群趨近之標的,另一策略是使用隨機擴大搜尋方式。並使用8個無約束型函數與11個約束型函數檢驗GD-WOA搜尋最佳解之優化能力與泛用性。實驗結果顯示GD-WOA具有優異的搜尋能力表現而且具有良好的穩定性,特別是在高維度函數最佳化。

英文摘要

In recent years, machine learning has significantly improved in terms of capabilities, resulting in better performance for artificial intelligence systems, such as neural networks, which means that the number of parameters in the model has increased significantly. This means that the number of parameters in the models raises steeply, so the study of the optimization algorithm for optimizing high-dimensional parameters becomes more important. The improved optimization algorithm proposed in this study, called "Gaussian Distribution based Whale Optimization Algorithm (GD-WOA)", which improves the Whale Optimization Algorithm (WOA) by two main strategies. One of improving strategy is to establish a Gaussian random distribution at the position of the best whale during the searching process, and to generate a new position, thus making it as a new position that whales try to approach. Another strategy is to use a randomized approach to expand search. In this research, we use 8 unconstrained functions and 11 constrained functions to test the optimization ability and generality of GD-WOA when searching optimal solution. The results show that GD-WOA has excellent search performance and good stability, especially in the optimization of high-dimensional functions.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 資訊科學
基礎與應用科學 > 統計
社會科學 > 社會科學綜合
参考文献
  1. Aljarah, I.,Faris, H.,Mirjalili, S.(2018).Optimizing connection weights in neural networks using the whale optimization algorithm.Soft Computing,22(1),1-15.
  2. Basturk, B.,Karaboga, D.(2006).An Artificial Bee Colony (ABC) algorithm for numeric function optimization.Proceedings of the IEEE Swarm Intelligence Symposium,Indianapolis, USA:
  3. Birbil, Ş.,Fang, S. C.(2003).An electromagnetism-like mechanism for global optimization.Journal of Global Optimization,25(3),263-282.
  4. Cheng, R.,Jin, Y.(2015).A social learning particle swarm optimization algorithm for scalable optimization.Information Sciences,291,43-60.
  5. Coello Coello, C. A.(2002).Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art.Computer Methods in Applied Mechanics and Engineering,191(11-12),1245-1287.
  6. Das, S.,Abraham, A.,Chakraborty, U. K.,Konar, A.(2009).Differential evolution using a neighborhood-based mutation operator.IEEE Transactions on Evolutionary Computation,13(3),526-553.
  7. Dorigo, M.,Caro, G. D.(1999).Ant colony optimization: A new meta-heuristic.Proceedings of the 1999 Congress on Evolutionary Computation-CEC99,Washington, USA:
  8. Fonseca, C. M.,Fleming, P. J.(1993).Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization.Proceedings of the 5th International Conference on Genetic Algorithms,San Mateo, USA:
  9. Glover, F.(1989).Tabu search—part I.ORSA Journal on computing,1(3),190-206.
  10. Grefenstette, J. J.(1986).Optimization of control parameters for genetic algorithms.IEEE Transactions on Systems, Man, and Cybernetics,16(1),122-128.
  11. Hassan, G.,Hassanien, A. E.(2018).Retinal fundus vasculature multilevel segmentation using whale optimization algorithm.Signal, Image and Video Processing,12(2),263-270.
  12. Hatamlou, A.(2013).Black hole: A new heuristic optimization approach for data clustering.Information Sciences,222,175-184.
  13. Hedar, A.-R.,Fukushima, M.(2006).Derivative-free filter simulated annealing method for constrained continuous global optimization.Journal of Global Optimization,35(4),521-549.
  14. Holland, J. H.(1975).Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence.Ann Arbor:The University of Michigan Press.
  15. Hsu, D. S.(2019).Taoyuan, Taiwan,National Central University.
  16. Jain, M.,Singh, V.,Rani, A.(2019).A novel nature-inspired algorithm for optimization: Squirrel search algorithm.Swarm and Evolutionary Computation,44,148-175.
  17. Karaboga, D.,Basturk, B.(2007).A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm.Journal of Global Optimization,39(3),459-471.
  18. Kaveh, A.(Ed.)(2017).Applications of metaheuristic optimization algorithms in civil engineering.Cham:Springer International Publishing.
  19. Kennedy, J.,Eberhart, R.(1995).Particle swarm optimization.Proceedings of International Conference on Neural Networks,Perth, Australia:
  20. Li, C.,Priemer, R.,Cheng, K. H.(2004).Optimization by random search with jumps.International Journal for Numerical Methods in Engineering,60(7),1301-1315.
  21. Luo, J.,Shi, B.(2019).A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems.Applied Intelligence,49(5),1982-2000.
  22. Mafarja, M.,Mirjalili, S.(2018).Whale optimization approaches for wrapper feature selection.Applied Soft Computing,62,441-453.
  23. Mahdad, B.(2019).Improvement optimal power flow solution under loading margin stability using new partitioning whale algorithm.International Journal of Management Science and Engineering Management,14(1),64-77.
  24. Medani, K. B. O.,Sayah, S.,Bekrar, A.(2018).Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system.Electric Power Systems Research,163,696-705.
  25. Mirjalili, S.,Lewis, A.(2016).The whale optimization algorithm.Advances in Engineering Software,95,51-67.
  26. Mirjalili, S.,Mirjalili, S. M.,Lewis, A.(2014).Grey wolf optimizer.Advances in Engineering Software,69,46-61.
  27. Moodi, Y.,Mousavi, S. R.,Ghavidel, A.,Sohrabi, M. R.,Rashki, M.(2018).Using response surface methodology and providing a modified model using whale algorithm for estimating the compressive strength of columns confined with FRP sheets.Construction and Building Materials,183,163-170.
  28. Mostafa, A.,Hassanien, A. E.,Houseni, M.,Hefny, H.(2017).Liver segmentation in MRI images based on whale optimization algorithm.Multimedia Tools and Applications,76(23),24931-24954.
  29. Rao, R. V.,Savsani, V. J.,Vakharia, D. P.(2011).Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems.Computer-Aided Design,43(3),303-315.
  30. Rashedi, E.,Nezamabadi-pour, H.,Saryazdi, S.(2009).GSA: A gravitational search algorithm.Information Sciences,179(13),2232-2248.
  31. Ray, T.,Liew, K. M.(2003).Society and civilization: An optimization algorithm based on the simulation of social behavior.IEEE Transactions on Evolutionary Computation,7(4),386-396.
  32. Saremi, S.,Mirjalili, S.,Lewis, A.(2017).Grasshopper optimisation algorithm: Theory and application.Advances in Engineering Software,105,30-47.
  33. Shi, Y.,Eberhart, R.(1998).A modified particle swarm optimizer.Proceedings of the IEEE International Conference on Evolutionary Computation,Anchorage, USA:
  34. Socha, K.,Dorigo, M.(2008).Ant colony optimization for continuous domains.European Journal of Operational Research,185(3),1155-1173.
  35. Tan, Y.,Zhu, Y.(2010).Fireworks algorithm for optimization.Proceedings of the International Conference on Swarm Intelligence (ICSI 2010),Beijing, China:
  36. Tessema, B.,Yen, G. G.(2009).An adaptive penalty formulation for constrained evolutionary optimization.IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,39(3),565-578.
  37. Virupakshappa,Amarapur, B.(2020).Computer-aided diagnosis applied to MRI images of brain tumor using cognition based modified level set and optimized ANN classifier.Multimedia Tools and Applications,79(5),3571-3599.
  38. Werbos, P. J.(1990).Backpropagation through time: What it does and how to do it.Proceedings of the IEEE,78(10),1550-1560.
  39. Yang, X. S.(2010).Firefly algorithm, stochastic test functions and design optimisation.International Journal of Bio-Inspired Computation,2(2),78-84.
  40. Yang, X. S.,Deb, S.(2009).Cuckoo Search via Lévy flights.Proceedings of the World Congress on Nature & Biologically Inspired Computing,Coimbatore, India:
  41. Zhang, J.,Sanderson, A. C.(2009).JADE: Adaptive differential evolution with optional external archive.IEEE Transactions on Evolutionary Computation,13(5),945-958.
  42. Zhao, H.,Guo, S.,Zhao, H.(2017).Energy-Related CO2 emissions forecasting using an improved LSSVM model optimized by whale optimization algorithm.Energies,10(7),874.