题名

Finite Deformation of 2-D Thin Circular Curved Laminated Beams

并列篇名

二維圓形薄疊層曲樑之有限變形研究

DOI

10.29548/BGYY.201103.0002

作者

林秋文(Chiu-Wen Lin)

关键词

有限變形理論 ; 疊層曲樑 ; 解析解 ; 非線性行為 ; Finite deformation ; Curved laminated beams ; Variable curvatures ; Analytical solutions ; Non-linear behavior

期刊名称

修平學報

卷期/出版年月

22期(2011 / 03 / 01)

页次

19 - 34

内容语文

英文

中文摘要

本研究應用解析方法,分析研究二維圓形薄疊層曲樑之有限變形;其一般通解以曲樑之基本幾何特性值表示之。當曲率半徑確定時,則曲樑之基本幾何特性值可以計算出;並藉以求得曲樑之剪力、軸向力、彎矩、旋轉角、變形位移場與未變形位移場等物理量之閉合型式解。本文發表了懸臂圓形薄曲樑承受純彎矩作用之閉合型式解,並與有限元素法套裝分析軟體ANSYS分析結果比較;結果非常一致。

英文摘要

An analytical method is derived for obtaining the finite deformation of 2-D thin curved laminated beams. The general solutions are expressed by fundamental geometric quantities. As the radius of curvature is given, the fundamental geometric quantities can be calculated to obtain the closed form solutions of the axial force, shear force, bending moment, rotation angle, and deformed or un-deformed displacement fields. The closed-form solutions of the circular curved laminated beams under pure bending moment case are presented. It shows the consistency of the results of present study with those by ANSYS.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
工程學 > 工程學綜合
工程學 > 機械工程
社會科學 > 社會科學綜合
参考文献
  1. Atanackovic, T. M.(1997).Stability theory of elastic rods.World Scientific.
  2. Attard, M. M.(2003).Finite strain - beam theory.International J. Solids and Structures,40,4563-4584.
  3. Brush, D. O.,Almroth, B. O.(1975).Buckling of bars, plates and shells.New York:McGraw-Hill.
  4. Green, A. E.,Laws, N.(1973).Remarks on the theory of rods.J. Elasticity,3,179-184.
  5. Green, A. E.,Naghdi, P. M.(1970).Non-isothermal theory of rods, plates and shells.Int. J. Solids Strucs,6,209-244.
  6. Green, A. E.,Naghdi, P.M.,Wenner, M. L.(1974).One the theory of rods II. Developments by direct approach.Proc. Roy. Soc. Lond. A,337,485-507.
  7. Green, A. E.,Naghdi, P.M.,Wenner, M. L.(1974).One the theory of rods I. Derivations from the three-dimensional equations.Proc. Roy. Soc. Lond. A,337,451-483.
  8. Herakovich, C. T.(1998).Mechanics of Fibrous Composites.John Wiley & Sons.
  9. Li, M.(1999).The finite deformation theory for beam, plate and shell Part III. The three-dimensional beam theory and the FE formulation.Computer methods in applied mechanics and engineering,162(1-4)
  10. Li, M.(1997).The finite deformation theory for beam, plate and shell Part I. the two-dimensional beam theory.Computer Methods Appl Mech. Engrg.,146,53-63.
  11. Lin, C. W.(2009).Finite Deformation of 2-D Thin circular curved beams.Hsiuping Journal,19,203-216.
  12. Lin, K. C.,Huang, S. H.(2007).Static Closed-form Solutions for In-plane Thick Curved Beams with Variable Curvatures.J. Solid Mechanics and Material Engineering,1,1026-1034.
  13. Lin, K. C.,Huang, S. H.(2007).Static Closed-form Solutions for In-plane Shear Deformable Curved Beams with Variable Curvatures.J. Solid Mechanics and Material Engineering,1,1362-1373.
  14. Lin, K.C.,Hsieh, C.M.(2007).The closed form general solutions of 2-D curved laminated beams of variable curvatures.Composite Structures,79,606-618.
  15. Mauget, B.,Perré, P.(1999).A large displacement formulation for anisotropic constitutive laws.Eur. J. Mech. A/Solids,18,859-877.
  16. Naghdi, P.M.(1980).Finite deformation of elastic rods and shells.Proc. Iutam Symp. On Finite Elasticity
  17. Oguibe, C.N.,Webb, D. C.(2000).Large deflection analysis of multilayer cantilever beams subjected to impulse loading.Computers and Structures,78,537-547.
  18. Timoshenko, S. P.(1961).Theory of elastic stability.McGraw-Hill.
  19. Toi, Y.,Lee, J.,Taya, M.(2004).Finite element analysis of super-elastic large deformation behavior of shape memory alloy helical springs.Computers and Structures,82,1685-1693.