题名 |
獨立伯努利變數和之變異數與香儂熵 |
并列篇名 |
On the Variance of Sum of Independent Bernoulli Random Variables and Shannon Entropy |
DOI |
10.29548/BGYY.201103.0003 |
作者 |
繆紹昌(Shao-Chang Miao);陳志賢(Chih-Sheng Chen);劉家頤(Chia-Yee Liu) |
关键词 |
蓋理論 ; 蕭爾-凸性質 ; 香儂熵 ; 凸多邊形區 ; Majorization ; Schur-Convexity ; Shannon Entropy ; Convex polygonal Region |
期刊名称 |
修平學報 |
卷期/出版年月 |
22期(2011 / 03 / 01) |
页次 |
35 - 43 |
内容语文 |
繁體中文 |
中文摘要 |
假設某國中某班共有n名學生,令p(下標 i)(0≤p(下標 i≤1)為第i位學生能順利進入理想高中之機率。令X(下標 i)為參數p(下標 i)之伯努利隨機變數,則S=X1+X2…+X(下標 n)為能進入理想高中之總人數。在p1+p2+…p(下標 n)為一固定常數的限制下,以兩種方法找出Var[S]之極大值與極小值之條件,也建立出Var[S]之極值與香儂熵之關係。 |
英文摘要 |
There are n students in a class. The ith student is evaluated and assigned a constant P(subscript i) (0≤P(subscript i)≤1) reflecting the student's probability of being admitted to an ideal high school. Let X(subscript i) (1≤i≤n) be independent Bernoulli random variables with parameters P(subscript i). Then S=X1+X2+…X(subscript n) is the number of the students in the class who will be admitted to an ideal high school. Assuming that P1+P2+…P(subscript n) is a fixed constant, the maximum and minimum values of Var[S] are obtained using two different methods. The notions of majorization and Shannon entropy relevant the problem are defined and discussed. The relationships between the extremal values of Var [S] and Shannon entropy are also established. |
主题分类 |
人文學 >
人文學綜合 基礎與應用科學 > 基礎與應用科學綜合 工程學 > 工程學綜合 工程學 > 機械工程 社會科學 > 社會科學綜合 |
参考文献 |
|