题名

Nonlinear Rupture Theory of a Thin Micropolar Liquid Film on a Cylinder under a Magnetic Field

并列篇名

直立圓柱表面微極流體薄膜在磁場效應影響下之非線性破裂理論

DOI

10.29548/BGYY.201103.0005

作者

宋鴻明(Hung-Ming Sung);徐仲亭(Chung-Ting Hsu)

关键词

微極流體 ; 磁場 ; 破裂 ; 薄膜 ; 表面張力 ; 凡得瓦爾勢能 ; micropolar ; magnetic field ; rupture ; thin film ; surface tension ; van der Waals potential

期刊名称

修平學報

卷期/出版年月

22期(2011 / 03 / 01)

页次

63 - 80

内容语文

英文

中文摘要

本研究探討在磁場效應的影響下,直立圓柱表面微極流體薄膜的非線性破裂現象。首先使用長波微擾法推導薄膜的自由面方程式,利用電腦數值計算方法解薄膜的自由面方程式,研究微極流體薄膜受定值且均勻的磁場影響下,在直立圓柱表面的非線性破裂機制,分析磁場效應的大小、表面張力、凡得瓦爾勢能及圓柱半徑大小對破裂機制的影響,另外針對微極流體之微極參數K對薄膜破裂機制的影響,做深入的探討與分析。結果顯示,隨著磁場無因次參數、微極參數及圓柱半徑之增加,或減少初始擾動,將會延緩薄膜之破裂。

英文摘要

This paper studies the nonlinear rupture process of the thin micropolar liquid film on a cylinder under the influence of the uniform magnetic field. The long-wave perturbation method is employed to derive the generalized kinematic equations with free film surface conditions. The generalized nonlinear evolution equation is solved numerically. The effects of magnetic field, the van der Waals potential, the surface tension, the micropolar parameter, K, and the radius of the cylinder on the rupture behavior are extensively investigated. The results show that the film rupture time will be delayed by increasing the associated parameters including the Hartmann number, the micropolar parameter, and the radius of the cylinder, or to decrease the initial disturbance.

主题分类 人文學 > 人文學綜合
基礎與應用科學 > 基礎與應用科學綜合
工程學 > 工程學綜合
工程學 > 機械工程
社會科學 > 社會科學綜合
参考文献
  1. Ahmadi, G.(1976).Stability of a micropolar fluid layer heated from below.Int. J. Eng. Sci.,14,81-89.
  2. Alekseenko, S. V.,Narkoryakov, V. Y.,Pokusaev, B. G.(1991).Wave formation on a vertical falling liquid film.A.I.C.H.E J.,31,1446-1460.
  3. Chen, J. L.,Hwang, C. C.(1996).Nonlinear rupture theory of a thin liquid film on a cylinder.J. Colloid Interface Sci.,182,564-569.
  4. Cheng, P. J.,Chen, C. K.,Lai, H. Y.(2001).Nonlinear stability analysis of the thin micropolar liquid film flowing down on a vertical cylinder.ASME J. Fluids Eng.,123,411-421.
  5. Coons, J.E.,Halley, P.J.,McGlashan, S.a.,Tran-Cong, T.(2005).Scaling laws for the critical rupture thickness of common thin films.Colloids and Surfaces A,263,258-266.
  6. Datta, A. B.,Sastry, V. U. K.(1976).Thermal instability of a horizontal layer of micropolar fluid heated from below.Int. J. of Eng. Sci.,14,631-637.
  7. Dimitrov, D. S.(1983).Dynamic interactions between approaching surfaces of biological interest.Prog. Surf. Sci,14,295-300.
  8. Edwards, D. A.,Brenner, H.,Wasan, D.T.(1991).Interfacial transport processes and rheology.Boston:Butterworth-Heinemann.
  9. Eringen, A. C.(1980).Theory of anisotropic micropolar fluids.Int. J. of Eng. Sci.,18,5-17.
  10. Eringen, A. C.(1964).Simple microfluids.Int. J. Eng. Sci.,2,205-217.
  11. Eringen, A. C.(1967).Theory of micropolar fluids.J. Math. Mech.,16,1-18.
  12. Hsieh, D. Y.(1965).Stability of conducting fluid flowing down an inclined plane in a magnetic field.Phys. Fluid,8,1785-1791.
  13. Hung, C. I.,Tsai, J. S.(1997).Rupture of thin micropolar liquid film.Acta Mech.,122,217-223.
  14. Hung, C. I.,Tsai, J. S.(1996).Rupture of thin film under the magnetic field.J. appl. Phys.,80,4220-4222.
  15. Hung, C. I.,Tsai, J. S.,Chen, C. K.(1996).Nonlinear stability of the thin micropolar liquid film flowing down on a vertical plate.J. of Fluids Eng.,118,498-505.
  16. Hwang, C. C.,Chang, S. H.(1993).Rupture theory of thin power-law liquid film.J. Appl. Phys.,74,2965-2967.
  17. Hwang, C. C.,Chen, J. L.,Shen, L. F.(1996).Strong nonlinear dynamic rupture theory of thin liquid films.Phy. Rev. E.,54,3013-3016.
  18. Kakac, S.,Shah, R. K.,Aung, W.(1987).Handbook of single-phase heat transfer.New York:J. Wiley.
  19. Kolpashchikov, V. L.,Migun, N. P.,Prokhorenko, P. P.(1983).Experimental determination of material micropolar fluid constants.Int. J. of Eng. Sci.,21,405-411.
  20. Liu, C. Y.(1971).Initiation of instability in micropolar fluids.Phys. Fluids,14,1808-1809.
  21. Prokopiou, T. M.,Cheng, H.C.(1991).Long waves on inclined films at high Reynolds number.J. Fluid Mech.,222,665-691.
  22. Renardy, Y.,Sun, S. M.(1994).Stability of a layer of viscous magnetic fluid flow down an inclined plane.Phy. Fluid,6,3235-3246.
  23. Ruckenstein, E.,Jain, R. K.(1974).Spontaneous rupture of thin liquid films.J. Chem. Soc. F arady Trans. II,70,132-146.
  24. Sheludko, A.(1967).Thin liquid film.Adv. Colloid Interface Sci.,1,391-494.
  25. Stokes, V. K.(1984).Theories of fluids with microstructures- An introduction.Berlin:Springer-Verlag.
  26. Tsai, J. S.,Hung, C. I.,Chen, C. K.(1996).Nonlinear hydromagnetic stability analysis of condensation film flow down a vertical plate.Acta Mech.,118,197-212.
  27. Williams, M. B.,Davis, S. H.(1982).Nonlinear theory of film rupture.J. Colloid Interface Sci,90,220-228.