题名

應用智慧型咖啡烘焙系統於咖啡烘焙風味口感之研究

并列篇名

Research on the flavor and taste of coffee roasting by applying intelligent coffee roasting system

作者

楊道欣(Dao-Sin Yang);林文燦(Wen-Tsann Lin)

关键词

人工智慧 ; 咖啡豆烘培 ; RNN類神經網路 ; Artificial Intelligence ; Coffee Bean Roasting ; Recurrent Neural Network (RNN)

期刊名称

東亞論壇

卷期/出版年月

516期(2022 / 06 / 01)

页次

27 - 41

内容语文

繁體中文

中文摘要

在咖啡的製造程序中,透過烘焙製程可降低咖啡豆含水量,增加保存時間,且咖啡豆在烘焙過程中會釋放咖啡的酸、苦、甘等多種風味,改善風味品質的穩定性,焙火程度會影響咖啡的口感,其烘焙技巧需烘豆師大量的經驗。故本研究之主要目的在開發一套可藉由人工智慧自動調整及偵測咖啡豆烘培之裝置,透過IoT設備監控烘焙機內部環境,並使用RNN類神經網路自動控制烘培相關設備來控制烘焙曲線,以達到最適當的烘豆結果。採用人工智慧控制烘培設備,除可達到預期的烘培風味效果外,亦可降低烘豆人力需求及降低成本。使用人工智慧烘豆亦可紀錄烘培過程中的相關參數,不但可透明化整個烘培過程,也可以收集大量與完整烘培數據資料,作為未來更進一步的大數據分析使用。成功結合人工智慧與烘培作業,可將此技術推廣到其他相關烘培產業與設備開發,成為另一波的產業革命,將會是本研究的重大貢獻之一。咖啡豆烘焙後,經咖啡杯測評分表評測後之結果,淺焙咖啡豆平均得分為86.475、中焙咖啡豆平均得分為87.775、深焙咖啡豆平均得分為77.775,在口感風味上得到了最佳化的參數為中度烘焙之咖啡豆,烘焙時的火力大小為150 Kpa mmAq,風門刻度為全程烘焙時刻度5、脫水期刻度9,鍋爐轉速為50 RPM,烘焙時間落在10分鐘,咖啡豆經烘焙後失重率13%。

英文摘要

In the coffee manufacturing process, through the roasting process, the water content of the coffee beans can be reduced, the storage time can be increased, and the coffee beans will release various flavours such as sour, bitter, and sweet coffee during the roasting process, and improve the stability of the flavour quality. The degree will affect the taste of the coffee, and its roasting skills require a lot of experience from the roaster. Therefore, the main purpose of this research is to develop a device that can automatically adjust and detect the roasting of coffee beans through artificial intelligence, monitor the internal environment of the roaster through IoT equipment, and use the recurrent neural network (RNN) to automatically control roasting-related equipment. Control the roasting profile for the most appropriate roasting results. Using artificial intelligence to control the baking equipment can not only achieve the expected baking flavour effect but also reduce the labour requirement and cost of baking beans. Using artificial intelligence to bake beans can also record relevant parameters in the baking process, which not only makes the entire baking process transparent but also collects a large amount of complete baking data for further big data analysis in the future. The successful combination of artificial intelligence and baking operations can promote this technology to other related baking industries and equipment development, resulting in another wave of the industrial revolution, which will be one of the major contributions of this research. After the coffee beans are roasted, the average score of the lightly roasted coffee beans is 86.475, the average score of the medium roasted coffee beans is 87.775, and the average score of the dark roasted coffee beans is 77.775. The optimized parameters are medium roasted coffee beans, the firepower during roasting is 150 Kpa more, the throttle scale is 5 during the whole roasting period, 9 on the dehydration period scale, the boiler speed is 50 RPM, the roasting time falls within 10 minutes, and the coffee The weight loss rate of beans after roasting is 13%.

主题分类 社會科學 > 社會科學綜合
社會科學 > 社會學
参考文献
  1. 巫沛倉,廖紫柔,邱詩彥(2021)。運用灰關聯分析與倒傳遞類神經網路建構財務危機預警模型。管理資訊計算,10(1),121-132。
    連結:
  2. 高子壹(2022)。世界咖啡,在地味蕾:臺灣咖啡師如何進行「好味」協商。中國飲食文化,18(1),91-145。
    連結:
  3. 顏兆熊(2017)。咖啡與健康。臨床醫學月刊,79(2),112-117。
    連結:
  4. Nehlig, A.(2016).Effects of coffee/caffeine on brain health and disease: What should I tell my patients?.Practical neurology,16(2),89-95.
  5. Wang, A.,Wang, S.,Zhu, C.(2016).Coffee and cancer risk: A meta-analysis of prospective observational studies.Sci Rep,6,33711.
  6. Yoo, S. K.(2018).Roasting Craft: New Guidelines for a Professional Coffee Roaster.Sung Dae, Hong.
  7. 王士文(2001)。輔仁大學歷史研究所。
  8. 李宛凌(2008)。臺北教育大學社會科學教育學系。
  9. 沈憲政(2005)。國立臺灣師範大學體育學系所。
  10. 邱云莉(2021)。國立台北大學法律學系。
  11. 陳威昇(2003)。成功大學。
  12. 陳漢賢(2017)。華梵大學電子工程學系碩士班。
  13. 陳耀茂(2003).田口統計解析法.臺北:五南文化.
  14. 黃駿,哈雷(2021).深度學習的 16 堂課:CNN + RNN + GAN + DQN + DRL,看得懂、學得會、做得出!.旗標.
  15. 韓鋐諭(2021)。國立雲林科技大學電機工程系。
  16. 蘇朝墩(2010).品質工程.前程文化.