题名

Bayesian Analysis of a change-point Poisson Process

并列篇名

布瓦松過程具轉折點之貝氏分析

DOI

10.6595/BDCM.2007.2(2).1

作者

林億雄(Yi-Hsiung Lin);任眉眉(Mei-Mei Zen)

关键词

貝氏因子 ; 煤礦災變資料 ; 第二型最大概似估計 ; 均勻前驗分布 ; 單峰 ; Bayes factor ; British coal-mining disaster data ; ML-II approach ; Uniform prior ; Unimodal

期刊名称

致遠管理學院學報

卷期/出版年月

2_2期(2007 / 09 / 01)

页次

1 - 15

内容语文

英文

中文摘要

對於具有轉折點的布瓦松過程,其前驗分布一般均考量均勻分布,但考量單峰分布則較為符合實際情形,同時可顯出轉折點的特性。本文首先考量一些常用的單峰前驗分布,其次使用第二型最大概似估計藉以求得經驗貝氏估計量。關於如何決定適當的前驗分布,本文使用貝氏因子法則。其經驗貝氏估計量的計算則使用蒙地卡羅積分方法,此統計方法用於分析一組煤礦災變資料。根據研究結果,貝他前驗分布在轉折點分析上有較佳表現,並能呼應配置單峰前驗分布的合理性。

英文摘要

For a Poisson process with a change-point, a uniform prior is commonly used for the change-point, but it is more realistic to put a unimodal prior on it, which outlines an important feature of prior beliefs. We consider a couple of unimodal priors on the change-point first and use ML-II approach to obtain the empirical Bayes estimators in this paper. The Bayes factor is used for the selection of a suitable prior. The procedure is applied to the British coal-mining disaster data. Finally, a comparison among these empirical Bayes estimators is made by Monte Carlo integration. It turns out that the ML-II Beta prior fit the data most, which corresponds to the prior belief of unimodality.

主题分类 人文學 > 人文學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
参考文献
  1. Bain, L. J.,Engelhardt, M.(1991).Statistical Analysis of Reliability and Lifetesting Models.New York:Marcel Dekker.
  2. Good, I. J.(1983).Good Thinking: The Foundations of Probability and Its Applications.Minneapolis:University of Minnesota.
  3. Jarrett, R. G.(1979).A note on the intervals between coal mining disasters.Biometrika,66,191-193.
  4. Maguire, B. A.,Pearson, E. S.,Wynn, A. H. A.(1952).The time intervals between industrial accidents.Biometrika,39,168-180.
  5. Rafery, A. E.,Akman, V. E.(1986).Bayesian analysis of a poisson process with a change-point.Biometrika,73,85-89.
  6. Rigdon, S. E.,Basu, A. P.(2000).Statistical Methods for the Reliability of Repairable Systems.New York:John Wiley.
  7. Zen, M. M.,DasGupta, A.(1993).Estimating a Binomial parameter: Is robust Bayes real Bayes.