题名

運用決策樹建立骨科手術時間預測模型-以某區域教學醫院為例

并列篇名

Using the Decision Tree Establishment Orthopedics Surgery Time Forecast Model: Take Some Region Teaching Hospital as the Example

DOI

10.6530/YYN.201911_13(3).0005

作者

劉翠燕(Tsui-Yen Liu);林伯堅(Bojain Lin);吳文祥(Wen-Hsiang Wu)

关键词

手術時間 ; 決策樹分析 ; Beta分佈 ; surgery time ; decision tree ; Beta distribution

期刊名称

源遠護理

卷期/出版年月

13卷3期(2019 / 11 / 01)

页次

31 - 40

内容语文

繁體中文

中文摘要

背景:手術排程會直接影響手術室的使用效率及營運效益,而手術時間預測是手術排程系統最重要的資訊,大部分醫院手術系統的時間以醫師經驗決定排程,與實際時間產生落差。目的:掌握影響手術時間的變數,才能估計出合宜的手術時間以作為排程決策之參考。方法:運用資料探勘方法中的決策樹找出影響手術時間的變數,由於系統要能夠估計醫師預排手術時間的可能性,必須先計算其機率,透過Beta分佈演算出時間參數,掌握α及β估計值可計算出手術起始時間及其機率,再與醫師實際手術時間相互驗證。結果:找到影響手術時間的變數包括手術術式、麻醉方式、所使用的骨材等。結論與實務運用:實際運用在臨床上醫師的手術時間排程,以此模型估計出排程手術時間的機率大小及是否在估計時間的合理範圍內,經由臨床實際情況不斷的修正將排程改善至效率最佳化。

英文摘要

Background: Surgical scheduling directly affects the efficiency of surgeons' operating and the oper¬ation room. Surgery time prediction is the most important information of the surgical scheduling system. Most hospital surgical time in the systems is determined by the doctor's experience; therefore, the actual time has wide variation. Purpose: To grasp the variables that affect the operation time, to better estimate the appropriate operation time to make better scheduling decisions. Methods: Use the decision tree in the data exploration to identify key variables that affect the operation time. The system needs to collect time estima¬tion before surgery to compare with actual time of the surgery to establish the predication model. Through the Beta distribution calculation time parameters, use the α and β numerical estimation calculus to compare predicted end time with actual end time of each surgeon. Results: The variables that affected the time of surgery included surgical procedures, anesthesia methods, physicians, and bone materials used. Conclusion and practical application: To better arrange surgeons' surgery schedule base on the estimated probability of operation time, to know if the surgery is within the reasonable range of estimated time, and to improve the scheduling through continuous correction of clinical actual situation. To optimize efficiency.

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
参考文献
  1. 林承俊,胡雅涵(2017)。運用資料探勘技術建構植牙手術成敗預測模型。醫學與健康期刊,6(2),57-69。
    連結:
  2. Bair, A. E.,Song, W. T.,Chen, Y. C.,Morris, B. A.(2010).The impact of inpatient boarding on ED efficiency: A discrete-event simulation study.Journal of Medical Systems,34(5),919-929.
  3. Dexter, F.,Macario, A.,Traub, R. D.,Hopwood, M.,Lubarsky, D. A.(1999).An operating room scheduling strategy to maximize the use of operating room block time: Computer simulation of patient scheduling and survey of patients’ preferences for surgical waiting time.Anesthesia & Analgesia,89(1),7-20.
  4. Fugener, A.,Schiffels, S.,Kolisch, R.(2017).Overutilization and underutilization of operating rooms-insights from behavioral health care operations management.Health Care Management Science,20(1),115-128.
  5. Hamilton, D. M.,Breslawski, S.(1994).Operating room scheduling. Factors to consider.AORN Journal,59(3),665-668.
  6. Li, F.,Gupta, D.,Potthoff, S.(2016).Improving operating room schedules.Health Care Management Science,19(3),261-278.
  7. Mei, T. C.(2016).A study on the effect on scheduling and management of surgeries with the introduction of excellent medical information.Studies in Health Technology and Informatics,225,824-825.
  8. Rothstein, D. H.,Raval, M. V.(2018).Operating room efficiency.Seminars in Pediatric Surgery on surgeons’ own estimatesHospitals,27(2),79-85.
  9. Sheen, E. T.(1963).A realistic surgery schedule based on surgeons’ own estimates.Hospitals,37,49-50.
  10. Strum, D. P.,Sampson, A. R.,May, J. H.,Vargas, L. G.(2000).Surgeon and type of anesthesia predict variability in surgical procedure times.Anesthesiology,92(5),1454-1466.
  11. Wright, I. H.,Kooperberg, C.,Bonar, B. A.,Bashein, G.(1996).Statistical modeling to predict elective surgery time. Comparison with a computer scheduling system and surgeon-provided estimates.Anesthesiology,85(6),1235-1245.
  12. Xiang, W.,Yin, J.,Lim, G.(2015).A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints.Artificial Intelligence in Medicine,63(2),91-106.
  13. 江淑如(2011)。台中市,中興大學資訊科學與工程學系研究所。
  14. 林怡君(2003)。台北市,臺灣大學醫療機構管理研究所。
  15. 林重賢(2002)。台北市,臺灣大學醫療機構管理研究所。
  16. 陳怡綾(2003)。高雄市,國立中山大學應用數學學系研究所。
  17. 陳春枝(2000)。台北市,國立台北醫學大學護理系碩士暨碩士在職專班。
  18. 陳德芳(2006)。台北市,國立台灣大學醫療機構管理研究所。
  19. 陳德芳,王拔群,蘇喜,陳雅惠(2008)。建立手術時間預測模式手術室排程管理-以某個案醫院為例。醫院,41(3),37-46。
  20. 童麗清(2013)。台中市,東海大學工業工程與經營資訊學系剛接衣物工程與管理研究所。
  21. 蔣安仁(2004)。高雄市,國立中山大學醫務管理研究所。
  22. 蔣安國,蔣安仁,楊克平,郭榮煌(2005)。醫院手術房之整合以提升其使用率。經營管理論叢,1,165-176。
  23. 衛生福利部(2017).106年度全民健康保險醫療統計年報. 取自https://dep.mohw.gov.tw/DOS/np-4267-113.html
  24. 鍾琬喬(2014)。台北市,淡江大學水資源及環境工程學系研究所。
  25. 醫策會(2019·無日期).108年度醫院評鑑基準及評量項目(區域醫院、地區醫院適用).取自https://www.jct.org.tw/dl-4233-feb3ec35e144917a 98676c79f47e419. html