题名

Web Relevant Term Suggestion Using Log-based and Text-based Approaches

作者

Hsiao-Tieh Pu;Hsin-Chen Chiao

关键词

Web Information Retrieval ; Relevant Term Suggestion ; Log Analysis

期刊名称

圖書資訊學研究

卷期/出版年月

1卷1期(2006 / 12 / 01)

页次

1 - 21

内容语文

英文

英文摘要

The study attempts to integrate log-based and text-based methods to obtain appropriate relevant terms for web search. The merits and limitations of using these two types of resources for term suggestion are also discussed. Further, the study proposes to cluster the relevant terms extracted into certain concept clusters hierarchically, which allows users to browse the terms in a more intuitive and meaningful way. The integrated model will enhance effectiveness of current web information retrieval systems and benefit further research.

主题分类 人文學 > 圖書資訊學
社會科學 > 傳播學
参考文献
  1. Online keyword suggestion tools
  2. Beeferman, D.,Berger, A.(2000).Agglomerative clustering of a search engine query log.Proceedings of ACM SIGKDD Int'l Conference
  3. Belkin, N.J.(2001).Iterative exploration, design and evaluation of support for query reformulation in interactive information retrieval.Information Processing & Management,37(3),403-434.
  4. Belkin, N.J.,Oddy, R.N.,Brooks, H.M.(1982).ASK for information retrieval: part 1: background and theory.Journal of Documentation,38(2),61-71.
  5. Chuang, Shui-Lung,Chien, Lee-Feng.(2002).Towards automatic generation of query taxonomy: A hierarchical query clustering approach.IEEE Conference on Data Mining
  6. Better search results than Google? Next-generation sites help narrow Internet searches
  7. Fidel, R.(1991).Searcher's selection of search keys.Journal of the American Society for Information Science,42(7),490-500 & 515-27.
  8. Harman, D.,Frakes, W.B. (eds),R. Baeza-Yates (eds).(1992).Information Retrieval: Data Structures and Algorithms.Englewood Cliffs, NJ:Prentice Hall.
  9. Huang, C.K.,Chien, Lee-Feng,Oyang, Y.J.(2003).Relevant term suggestion in interactive web search based on contextual information in query session logs.Journal of the American Society for Information Science & Technology,54(7),638-649.
  10. Jansen, B.J.,Spink, A.,Saracevic, T.(2000).Real life, real users, and real needs: a study and analysis of user queries on the web.Information Processing and Management,36(2),207-227.
  11. Jing, Y.,Croft, W.B.(1994).UMass Technical ReportUMass Technical Report,未出版
  12. Vivisimo like a "superfast librarian"
  13. Lin, Dekang(1998).Automatic retrieval and clustering of similar words.COLING-ACL,98,768-774.
  14. Pu, Hsiao-Tieh, Chuang, Shui-Lung,Yang, C.(2002).Subject categorization of query terms for exploring Web users' search interests.Journal of the American Society for Information Science & Technology,53(8),617-630.
  15. Salton, G.,Buckley, C.(1990).Improving retrieval performance by relevance feedback.Journal of the American Society for Information Science & Technology,41(4),288-297.
  16. Schutze, H.,Pedersen, J.O.(1997).A coocurrence-based thesaurus and two applications to information retrieval.Information Processing &Management,33,307-318.
  17. Silverstein, C.(1998).SRC Technical Report 1998-014.COMPAQ Systems Research Center.
  18. Smadja, F.(1993).Retrieving collocations from text: Xtract.Computational Linguistics,19,143-177.
  19. Spink, A.(1995).Term relevance feedback and mediated database searching: implications for information retrieval practice and systems design.Information Processing & Management,31(2),161-171.
  20. Wan, T.L.(1997).Experiments with automatic indexing and a relational thesaurus in a Chinese information retrieval system.Journal of the American Society for Information Science,48(12),1068-1096.
  21. Wen, J.-R.,Nie, J.-Y.,Zhang, H.J.(2001).Clustering user queries of a search engine.Proceedings of the 10th International World Wide Web Conference