题名

Tourist Arrival Forecasting Using Adaptive Fuzzy Network

并列篇名

以可適性模糊網路預測觀光客人數之研究

DOI

10.30163/BR.200706.0008

作者

江曉綺(Sheau-Chi Jiang)

关键词

可適性模糊網路 ; 觀光業 ; 預測 ; 學習演算法 ; Adaptive fuzzy network ; Tourism ; Forecast ; Learning algorithm

期刊名称

文大商管學報

卷期/出版年月

12卷1期(2007 / 06 / 01)

页次

187 - 206

内容语文

英文

中文摘要

國際觀光業是世界最大及成長最快速的產業,由於觀光產業的產品與服務具有無法保存的特性,因此如果能準確預測國際觀光客人數便可對觀光產品、服務的提供及基本的設施做成功的規劃以增加經濟利益。因此本研究提出一個新的預測工具,即是使用以Widrow-Hoff學習演算法為基礎的可適性模糊網路來建立一個預測的模式,並據以預測來台的日本與美國觀光客人數,其預測結果可以達到非常不錯的準確度,因此可證實此研究所建立之模式是一個具有良好預測能力的模式,並可作為觀光產業決策者與管理者在觀光產品及設施規劃上的重要參考。

英文摘要

International tourism has become one of the largest and most rapidly growing industries in the world. Since there exists the perishable nature of the product and service in the tourism industry, it is crucial to have an accurate forecast of its international visitors and tourism receipts in order to choose an appropriate strategy for its economic benefits. In this paper, a new approach is proposed and that is a fully connected adaptive fuzzy network (AFN) based on Widrow-Hoff learning algorithm to model and forecast the tourist arrivals for the travel of international visitors to Taiwan. And the difference between the expected and the forecast output values falls into a very acceptable range of discrepancies, which means that using the adaptive fuzzy network has reached the required level of accuracy. The result is in good accord with the monitored data and allows its use as the forecasting model to help policy makers and managers of tourism industry to develop planning for various tourism activities.

主题分类 人文學 > 地理及區域研究
社會科學 > 經濟學
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Andrew, W. P.,Cranage, D. A.,Lee, C. K.(1991).Forecasting hotel occupancy rates with time series models: an empirical analysis.Hospitality Research Journal,14(2),173-181.
  2. Athiyaman, A.,Robertson, R. W.(1992).Time series forecasting techniques: short-term planning in tourism.International Journal of Contemporary Hospitality Management,4(4),8-11.
  3. Box, G. E. P.,Jenkins, G. M.(1976).Time series analysis: Forecasting and control.San Francisco:Holden Day.
  4. Burger, C.,Dohnal, M.,Kathrada, M.,Law, R.(2001).A practitioner`s guide to time-series methods for tourism demand forecasting: A case study of Durban, South Africa.Tourism Management,22(4),403-409.
  5. Castro, J. L.(1995).Fuzzy logic controllers are universal approximators.IEEE Transactions on Systems, Man and Cybernetics,25(4),629-635.
  6. Chandra, S.,Menezes, D.(2001).Applications of multivariate analysis in international tourism research: the marketing strategy perspective of NTOs.Journal of Economic and Social Research,3(1),77-98.
  7. Chen, B. S.(1996).H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach.IEEE Transactions on Fuzzy Systems,4(1),32-43.
  8. Cho, V.(2003).A comparison of three different approaches to tourist arrival forecasting.Tourism Management,24(3),323-330.
  9. Cybenko, G.(1989).Approximation by superpositions of a sigmoidal function.Mathematical Control, Signal and Systems,2,303-314.
  10. Fayed, H.,Fletcher, J.(2002).Globalization of economic activity: issues for tourism.Tourism Economics,8(2),207-230.
  11. Funahashi, K.(1989).On the approximate realization of continuous mappings by neural networks.Neural Networks,2(3),183-192.
  12. Hansen, J. V.,McDonald, J. B.,Nelson, R. D.(1999).Time series prediction with genetic-algorithm designed neural networks: an empirical comparison with modern statistical models.Computational Intelligence,15(3),171-184.
  13. Hornik, K.,Stinchcombe, M.,White, H.(1989).Multilayer feedforward networks are universal approximators.Neural Networks,2(5),359-366.
  14. Jang, J. S. R.,Sun, C. T.,Mizutani, E.(1997).Neural-fuzzy and soft computing.New Jersey:Prentice Hall.
  15. Kuo, R. J.,Xue, K. C.(1998).A decision support system for sales forecasting through fuzzy neural networks with asymmetric fuzzy weights.Decision Support Systems,24(2),105-126.
  16. Law, R.(1998).Room occupancy rate forecasting: A neural network approach.International Journal of Contemporary Hospitality Management,10(6),234-239.
  17. Law, R.(2000).Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting.Tourism management,21(4),331-340.
  18. Law, R.,Au, N.(1999).A neural network model to forecast Japanese demand for travel to Hong Kong.Tourism management,20(1),89-97.
  19. Li, Y.,Deng, J. M.,Wei, M. Y.(2002).Meaning and precision of adaptive fuzzy systems with Gaussian-type membership functions.Fuzzy Sets and Systems,127(1),85-97.
  20. Lim, C.(1997).An econometric classification and review of international tourism demand models.Tourism Economics,3(1),69-81.
  21. Lin, C. T.,Lee, C. S. G.(1996).Neural Fuzzy Systems.New Jersey:Prentice Hall.
  22. Lin, C. T.,Lee, C. S. G.(1991).Neural-network-based fuzzy logic control and decision system.IEEE Transactions on Computers,40(12),1320-1336.
  23. Maier, H.R.,Sayed, T.,Lence, B.J.(2000).Forecasting cyanobacterial concentrations using B-spline networks.Journal of Computing in Civil Engineering,14(3),183-189.
  24. Morley, C.(2000).Demand modeling methodologies: integration and other issues.Tourism Economics,6(1),5-19.
  25. Nunnari, G.,Nucifora, A. F. M.,Randieri, C.(1998).The application of neural techniques to the modeling of time-series of atmospheric pollution data.Ecol. Model,111(2-3),187-205.
  26. Palmer, A.,Montaño, J. J.,Sesé, A.(2006).Designing an artificial neural network for forecasting tourism time series.Tourism management,27(5),781-790.
  27. Pattie, D. C.,Snyder, J.(1996).Using a neural network to forecast visitor behavior.Annals of Tourism Research,23(1),151-164.
  28. Sheldon, P. J.,Var, T.(1985).Tourism forecasting: a review of empirical research.Journal of Forecasting,4(2),183-195.
  29. Sugeno, M.,Kang, G. T.(1988).Fuzzy identification of fuzzy model.Fuzzy Sets and Systems,28(1),15-33.
  30. Takagi, T.,Sugeno, M.(1985).Fuzzy identification of systems and its application to modeling and control.IEEE Transactions on Systems, Man and Cybernetics,15(1),116-132.
  31. Tanaka, K.,Sugeno, M.(1992).Stability analysis and design of fuzzy control systems.Fuzzy Sets and Systems,45(2),135-156.
  32. Tong, S.,Li, H. X.(2002).Direct adaptive fuzzy output tracking control of nonlinear systems.Fuzzy Sets and Systems,128(1),107-115.
  33. Uysal, M.,El Roubi, M. S.(1999).Artificial neural networks versus multiple regression in tourism demand analysis.Journal of Travel Research,38(2),111-118.
  34. Wang, L. X.(1997).A course in fuzzy systems and control.New Jersey:Prentice Hall.
  35. Wang, L. X.(1993).Stable adaptive fuzzy control of nonlinear systems.IEEE Transactions on Fuzzy Systems,1(2),146-155.
  36. Wasserman, P. D.(1989).Neural computing: Theory and practice.New York:Van Nostrand Reinhold.
  37. Witt, S. F.,Witt, C. A.(1995).Forecasting tourism demand: a review of empirical research.International Journal of Forecasting,11(3),447-475.
  38. Wong, K.(1997).The Relevance of business cycles in forecasting international tourist arrivals.Tourism Management,18(8),581-586.
  39. Zadeh, L. A.(1973).Outline of a new approach to the analysis of complex systems and decision processes.IEEE Transactions on Systems, Man and Cybernetics,3,28-44.