题名

需求率與信用週期及售價有關之退化性商品存貨管理

并列篇名

Inventory Management for Deteriorating Items with Demand Rate on Credit Period and Selling Price

DOI

10.29916/JMPP.201409_8(3).0003

作者

林文豐(Wen-Feng Lin);張鉯崴(Yi-Wei Chang)

关键词

存貨 ; 經濟訂購量 ; 退化 ; 信用交易 ; Inventory ; Economic ordering quantity ; Deterioration ; Trade credit

期刊名称

管理實務與理論研究

卷期/出版年月

8卷3期(2014 / 09 / 01)

页次

38 - 53

内容语文

繁體中文

中文摘要

商品如損壞、揮發或變質等現象稱為退化,常見具退化性商品如蔬菜、水果及藥物等會有退化性問題產生。而供應商為增加零售商的訂貨量,有時會提供信用交易來刺激買氣,在信用交易週期內零售商將不用支付利息給供應商,但供應商提供較長的信用交易週期亦提高違約的風險。本文中提出一經濟訂購量存貨管理模型,主要探討零售商所訂購的商品具有退化性,另外商品的需求率考慮與信用交易週期及售出價格有關。文中將針對探討的模型提出定理來找出最適的訂購週期、售出價格及信用交易週期,使得整個訂購週期內具有最大的平均利潤,其後並以例題說明本模型。

英文摘要

Deterioration is defined as damage, evaporation or decay that prevents items from being used for its original purpose. Some examples of items that deteriorate are vegetables, fruits, pharmaceuticals and others. To increase sales, a supplier frequently offers retailers a trade credit period to promote the purchasing amount. There is no interest charge to retailers if the purchasing amount is paid within the credit period, but granting a long credit period from a supplier increases default risk. In this paper, we propose an economic order quantity inventory management model for items with deterioration and demand rate is a function of credit period and selling price. We then characterize the retail's optimal ordering period, selling price and credit period. Finally, we run numerical examples to illustrate the model we proposed.

主题分类 社會科學 > 管理學
参考文献
  1. Ahmed, M. A.,Khamis, T. A.,Benkherouf, L.(2013).Inventory models with ramp type demand rate, partial backlogging and general deterioration rate.Applied Mathematics and Computation,219,4288-4307.
  2. Chang, C. T.,Ouyang, L. Y.,Teng, J. T.,Cheng, M. C.(2010).Optimal ordering policies for deteriorating items using a discounted cash-flow analysis when a trade credit is linked to order quantity.Computers and Industrial Engineering,59,770-777.
  3. Chang, H. J.,Dye, C. Y.(2000).An EOQ model with deteriorating items in response to a temporary sale price.Production Planning and Control,11(5),464-473.
  4. Chang, H. J.,Hung, C. H.,Dye, C. Y.(2001).An inventory model for deteriorating items with linear trend demand under the condition of permissible delay in payments.Prod, Production Planning and Control,12,274-282.
  5. Chou, S. Y.,Chouhuanga, W. T.,Lin, J. S.,Chu, P.(2008).An analytic solution approach for the economic order quantity model with Weibull ameliorating items.Mathematical and Computer Modelling,48,1868-1874.
  6. Chuang, C. J.,Ho, C. H.,Ouyang, L. Y.,Wu, C. W.(2013).An integrated inventory model with order-size-dependent trade credit and quality improvement.Procedia Computer Science,17,365-372.
  7. Covert, R. B.,Philip, G. S.(1973).An EOQ model with Weibull distribution deterioration.AIIE Transactions,5,323-326.
  8. Dave, U.,Patel, L. K.(1981).(T, Si) Policy inventory model for deteriorating items with time proportional demand.Journal of the Operational Research Society,32,137-142.
  9. Ghare, P. M.,Schrader, G. F.(1963).A model for exponential decaying inventory.Journal of Industrial Engineering,14,238-243.
  10. Goyal, S. K.(1985).Economic order quantity under conditions of permissible delay in payments.Journal of the Operational Research Society,36,335-338.
  11. Jaber, M. Y.(2007).Lot sizing with permissible delay in payments and entropy cost.Computers and Industrial Engineering,52,78-88.
  12. Jamal, A. M. M.,Saker, B. R.,Wang, S.(2000).Optimal payment time for a retailer under permitted delay of payment by the wholesaler.International Journal of Production Economics,66,59-66.
  13. Khanra, S.,Ghosh, S. K.,Chaudhuri, K. S.(2011).An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment.Applied Mathematics and Computation,218,1-9.
  14. Lou, K. R.,Wang, W. C.(2013).Optimal trade credit and order quantity when trade credit impacts on both demand rate and default risk.Journal of the Operational Research Society,64,1551-1556.
  15. Sana, S. S.,Chaudhuri, K. S.(2008).A deterministic EOQ model with delays in payments and price-discount offers.European Journal of Operational Research,184,509-533.
  16. Sanni, S. S.,Chukwu, W. I. E.(2013).An Economic order quantity model for Items with Three-parameter Weibull distribution Deterioration, Ramp-type Demand and Shortages.Applied Mathematical Modelling,37,9698-9706.
  17. Skouri, K.,Konstantaras, I.,Papachristos, S.,Ganas, I.(2009).Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate.European Journal of Operational Research,192,79-92.
  18. Song, X.,Cai, X.(2006).Optimal payment time for a retailer under permitted delay of payment by the wholesaler.International Journal of Production Economics,103,246-251.
  19. Teng, J. T.(2002).On the economic order quantity under conditions of permissible delay in payments.Journal of the Operational Research Society,53,915-918.
  20. Teng, J. T.,Min, J.,Pan, Q.(2012).Economic order quantity model with trade credit financing for non-decreasing demand.Omega,40,328-335.
  21. Zhong, Y. G.,Zhou, Y. W.(2013).Improving the supply chain's performance through trade credit under inventory-dependent demand and limited storage capacity.International Journal of Production Economics,143,364-370.
  22. Zhong, Y. G.,Zhou, Y. W.(2012).The model and algorithm for determining optimal ordering/trade-credit policy of supply chains.Applied Mathematics and Computation,219,3809-3825.