题名

探究性別平等教育議題融入數學教學-以任務分析為進路

并列篇名

Exploring the Integration of Gender Equity Education Into Mathematics Teaching Through Task Analysis

DOI

10.6481/JTR.202008_13(2).02

作者

鄭章華(Chang-Hua Chen);林佳慧(Chia-Hui Lin)

关键词

性別平等教育 ; 議題融入 ; 概化理論 ; 數學素養導向教學 ; gender equity education ; generalizability theory ; issue integration ; mathematical competency-oriented teaching

期刊名称

教科書研究

卷期/出版年月

13卷2期(2020 / 08 / 15)

页次

31 - 57

内容语文

繁體中文

中文摘要

議題融入為近年來課程改革之要項,希冀引導學生進行思辨與價值澄清,並起而行動。然而轉化至教學現場常流於形式,除了政策支持、教師增能和參與之外,議題教育的推動,尚需更多作為,特別是融入數學等知識結構性強的科目。因此,本研究建構「性別平等教育議題融入數學分析表」,據以分析與檢核議題融入數學教學的品質。該表為數學認知需求度與議題融入層次性所組成,以「校園逐臭之【夫】」模組任務為案例,析辨其議題融入數學的特色,並以概化理論建立其信度。研究發現:一、分析表具備良好的信度,可有效識別模組任務設計的品質和特色。二、該模組可提供高品質的數學學習機會,惟融入的層次性與多樣性尚待提升。本研究發展之分析表,可做為教師自編教材或教科用書編寫之檢核工具,亦可用於議題融入之教師專業發展,為教師增能實務和相關研究做出貢獻。

英文摘要

In recent years, the integration of issue education into core subjects has become a critical component of curricular reforms seeking to enable learners to think critically, reflect on their values, and act in a socially positive manner. However, issue education has not been implemented in the general curriculum well, especially in subjects with a strong knowledge structure such as mathematics. Therefore, this study developed an analytical framework to evaluate the quality of teaching modules designed for gender equity education. The researchers applied the framework to analyze a teaching module that integrates gender equity education into mathematics. Generalizability theory was applied to test the reliability of the framework. The research findings suggested that the analytical framework demonstrated high reliability and allowed for a thorough analysis of the module's characteristics and the quality. Additionally, the teaching module was found to comprise various tasks requiring high-level mathematical cognition; however, the levels of diversity and multiplicity in the module require improvement. The developed framework can facilitate the examination of teaching materials or textbook compilations to assess whether they have integrated issue education into mathematical instruction. Additionally, it contributes to teachers' professional development practically and theoretically.

主题分类 社會科學 > 教育學
参考文献
  1. 王儷靜(2013)。重探性別融入教學之「融入」意涵。女學學誌:婦女與性別研究,32,1-41。
    連結:
  2. 李健恆,楊凱琳(2012)。從統計認知面向與圖表理解角度分析國中數學教科書的統計內容。教科書研究,5(2),31-72。
    連結:
  3. 林佳慧,劉欣宜,許碧如(2019)。十二年國教課綱中議題融入之實踐。學校行政,123,84-98。
    連結:
  4. 林聖欽(2012)。重大議題融入社會學習領域的課程設計──以地理為例。中等教育,63(2),6-31。
    連結:
  5. 林碧珍,鄭章華,陳姿靜(2016)。數學素養導向的任務設計與教學實踐──以發展學童的數學論證為例。教科書研究,9(1),109-134。
    連結:
  6. 徐偉民(2013)。國小數學教科書數學問題類型與呈現方式之比較分析──以臺灣、芬蘭、新加坡為例。科學教育學刊,21(3),263-289。
    連結:
  7. 晏向田(2017)。我是數學老師,我教性平。教育脈動,9,29-33。
    連結:
  8. 張子超(2017)。議題教育的意義與課程融入──以環境教育為例。教育脈動,11,23-30。
    連結:
  9. 潘慧玲,張嘉育(2019)。十二年國教課綱中議題教育實施的途徑與作法。學校行政,123,3-19。
    連結:
  10. 潘慧玲,黃馨慧(2016)。性別平等教育議題融入課程的回顧與展望。課程與教學季刊,19(2),1-26。
    連結:
  11. 十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校數學領域(2018)。
  12. 國民中小學九年一貫課程綱要重大議題(性別平等教育)(2012)。
  13. Banks, J. A.(1993).Multicultural education: Development, dimensions, and challenges.The Phi Delta Kappan,75(1),22-28.
  14. Banks, J. A.(Ed.),Banks, C. A. M.(Ed.)(2010).Multicultural education: Issues and perspectives.John Wiley & Sons.
  15. Brennan, R. L.(2001).Generalizability theory.Springer.
  16. Cardinet, J.,Johnson, S.,Pini, G.(2009).Applying generalizability theory using EduG.Routledge.
  17. Cohen, L.,Manion, L.(2000).Research methods in education.Routledge.
  18. Crocker, L.,Algina, J.(2006).Introduction to classical and modern test theory.Cengage Learning.
  19. Desimone, L. M.(2009).Improving impact studies of teachers’ professional development: Toward better conceptualizations and measures.Educational Researcher,38(3),181-199.
  20. Dowling, P.(1998).The sociology of mathematics education: Mathematical myths/pedagogic texts.Routledge.
  21. Garfield, J.,delMas, R.,Chance, B.(2003).The web-based artist: Assessment resource tools for improving statistical thinking project.The Annual Meeting of American Educational Research Association,Chicago, IL, United States:
  22. Hattie, J.,Fisher, D.,Frey, N.(2017).Visible learning for mathematics, grades K-12: What works best to optimize student learning.Corwin Mathematics.
  23. Hong, D. S.,Choi, K. M.(2014).A comparison of Korean and American secondary school textbooks: The case of quadratic equations.Educational Studies in Mathematics,85(2),241-263.
  24. Jones, D.,Tarr, J.(2007).An examination of the levels of cognitive demand required by probability tasks in middle grades mathematics textbooks.Statistics Education Research Journal,6(2),4-27.
  25. Lajoie, S. P.,Jacobs, V. R.,Lavigne, N. C.(1995).Empowering children in the use of statistics.The Journal of Mathematical Behavior,14(4),401-425.
  26. Lakatos, I.(1976).Proofs and refutations: The logic of mathematical discovery.Cambridge University Press.
  27. Malewski, E.(Ed.)(2010).Curriculum studies handbook: The next moment.Routledge.
  28. National Council of Teachers of Mathematics(2014).Principles to actions: Ensuring mathematical success.
  29. Organization for Economic Cooperation and Development. (2020). PISA 2021 mathematics framework. https://pisa2021-maths.oecd.org/#Home
  30. Rugg, H. O. (1923). Problems of contemporary life as the basis for curriculum-making in the social studies. In G. M. Whipple (Ed.), The twenty-second yearbook of the national society for the study of education, part II, social studies in the elementary and secondary school (pp. 260-273). Public School.
  31. Shavelson, R. J.,Webb, N. M.(1991).Generalizability theory: A primer.Sage.
  32. Stein, M. K.,Smith, M. S.(1998).Mathematical tasks as a framework for reflection: From research to practice.Mathematics Teaching in the Middle School,3(4),268-275.
  33. Stein, M. K.,Smith, M. S.,Henningsen, M.,Silver, E. A.(2000).Implementing standards-based mathematics instruction: A casebook for professional development.Teachers College Press.
  34. Symeonidis, V.,Schwarz, J. F.(2016).Phenomenon-Based teaching and learning through the pedagogical lenses of phenomenology: The recent curriculum reform in Finland.Forum Oświatowe,28(2),31-47.
  35. United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. https://sustainabledevelopment.un.org/post2015/transformingourworld/publication
  36. 方德隆,游美惠(2009).2008 國中小性別平等教育課程與教學實施現況調查.教育部.
  37. 王儷靜(2009)。不只是成績:數學教育裡的性別議題。教育研究月刊,185,29-45。
  38. 白亦方,周水珍,杜美智,張惠雯(2012)。新興議題於國中小課程實施的可行性分析。教育研究月刊,219,10-22。
  39. 吳俊憲,黃政傑(2010)。中小學課程政策改革之研究:九年一貫課程的回顧與前瞻。課程研究,5(2),47-62。
  40. 晏向田(2019)。性別融入數學領域/校園逐臭之【夫】。性別平等教育季刊,84,12-21。
  41. 晏向田,陳彥霖(2018).素養導向國民中學數學教材:蒐集數據與統計圖表(校園逐臭之【夫】)──學生手冊.
  42. 國家教育研究院(2018).十二年國民基本教育國民中小學暨普通型高級中等學校數學領域課程手冊.
  43. 國家教育研究院(2019).十二年國民基本教育國民中小學暨普通型高級中等學校議題融入說明手冊.
  44. 張芬芬,張嘉育(2015)。十二年國教「議題融入課程」規劃芻議。臺灣教育評論月刊,4(3),26-33。
  45. 莊明貞,何怡君(2005)。,國立教育研究院籌備處。
  46. 陳幸玫,許沛婷(2014)。真實資料運用於統計教材的理念和設計。科學教育月刊,374,24-40。
  47. 黃政傑(2005).課程改革新論:教育現場虛實探究.冠學.
  48. 楊巧玲(2018)。可「融」可「主」的性別平等教育議題課程與教學。性別平等教育季刊,84,9-11。
  49. 楊俊鴻,蔡清田(2018)。議題「融入」或議題「關聯」?局內人/局外人的觀點。臺灣教育評論月刊,7(10),22-25。
  50. 鄒聖馨,鍾靜(2001)。真實解讀計劃(AEP)在國小統計教學之實施研究。科學教育研究與發展季刊,24,61-80。
  51. 蔡麗玲(2014)。性別議題融入自然科技教學的五個概念與策略。性別平等教育季刊,66,54-66。
  52. 譚光鼎(編),劉美慧(編),游美惠(編)(2013).多元文化教育.高等教育.