题名

以科學建模歷程探索臺灣國中教科書中化學平衡概念模型的建構

并列篇名

Exploring the Construction of a Conceptual Model of Chemical Equilibrium in Taiwanese Junior High School Science Textbooks Through a Scientific Modeling Process

DOI

10.6481/JTR.202104_14(1).02

作者

鐘建坪(Jing-Ping Jong)

关键词

科學建模 ; 化學平衡 ; 教科書 ; 橫斷式研究 ; scientific modeling ; chemical equilibrium ; textbook ; cross-sectional study

期刊名称

教科書研究

卷期/出版年月

14卷1期(2021 / 04 / 15)

页次

31 - 56

内容语文

繁體中文

中文摘要

教科書在科學學習與教學中扮演重要的角色。目前研究顯示科學建模歷程能促進學生進行科學模型的建構,因此若是科學教科書能夠呈現科學建模歷程,則能更全面協助學生學習與教師教學。本研究主要採用內容分析法針對1968年至2019年間15本國民中學科學教科書,以四階段的科學建模歷程進行化學平衡概念模型的分析。研究發現多數版本內容著重在模型發展與模型精緻階段,少數版本才會呈現模型遷移與模型重建歷程。基於研究結果,作者認為教科書應該盡可能提供學生完整的科學建構歷程,並強化情境的學習,作為課堂科學概念與生活情境的連結。

英文摘要

Textbooks play a crucial role in science learning and teaching. Research has demonstrated that students' construction of scientific models would be facilitated via scientific modeling. If science textbooks present the complete process of scientific modeling, students would understand scientific modeling considerably more easily. This study employed the content analysis method to examine the conceptual model of chemical equilibrium that is based on a four-stage scientific modeling process-with the four stages being model development, model validity, model deployment, and model reconstruction-for 15 versions of science textbooks used between 1968 and 2019. Results highlighted that most versions focus on the model development and model validity stages; only a few versions presented detail on the model deployment and model reconstruction stages. On the basis of the findings, the author suggests that textbooks should not only provide students with the complete process of scientific modeling but should also anchor a context as a link between science and daily life.

主题分类 社會科學 > 教育學
参考文献
  1. 黃芳玫(2001)。九年國民義務教育之回顧與其教育面、經濟面之影響。臺灣經濟預測與政策,31(2),91-118。https://doi.org/10.29629/TEFP.200110. 0005
    連結:
  2. Bamberger, Y. M., & Elizabeth, A. D. (2013). Middle-school science students' scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213-238. http://doi.org/10.1080/095 00693.2011.624133
    連結:
  3. Chiu, M.-H., Chou, C.-C., & Liu, C.-J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688-712. http://doi.org/10.1002/tea.10041
    連結:
  4. Chiu, M.-H., & Lin, J.-W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(12). https://doi.org/10.1186/s43031 -019-0012-y
    連結:
  5. Gericke, N. M, & Hagberg, M. (2010). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40, 605- 623. http://doi.org/10.1007/s11165-009-9136-y
    連結:
  6. Gussarsky, E., & Gorodetsky, M. (1990). On the concept “chemical equilibrium”: The associative framework. Journal of Research in Science Teaching, 27(3), 197-204. https:// doi.org/10.1002/tea.3660270303
    連結:
  7. Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041. http://doi.org/10.1002/(SICI)1098- 2736(199611)33:9<1019::AID-TEA4>3.0.CO;2-I
    連結:
  8. Harrison, A. G., & De Jong, O. (2005). Exploring the use of multiple analogical models when teaching and learning chemical equilibrium. Journal of Research in Science Teaching, 42(10), 1135-1159. http://doi.org/10.1002/tea.20090
    連結:
  9. Jong, J.-P., Chiu, M.-H, & Chung, S.-L. (2015). The use of modeling-based text of ideal gas law to improve students' modeling competencies. Science Education, 99(5), 986- 1018. http://doi.org/10.1002/sce.21164
    連結:
  10. Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: Some challenges in the case of ‘the atom'. International Journal of Science Education, 22(9), 993-1009. http://doi.org/10.1080/095006900416875
    連結:
  11. Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling- based teaching. International Journal of Science Education, 31(5), 603-630. http://doi. org/10.1080/09500690802538045
    連結:
  12. Organisation for Economic Co-operation and Development. (2016). PISA 2015 assessment and analytical framework: Science, reading, mathematics and financial literacy. https://doi.org/10.1787/9789264255425-en
    連結:
  13. Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. http://doi.org/10.1080/09500693.2011.577842
    連結:
  14. Prins, G. T., Bulte, A. M. W., & Pilot, A. (2011). Evaluation of a design principle for fostering students' epistemological views on models and modelling using authentic practices as contexts for learning in chemistry education. International Journal of Science Education, 33(11), 1539-1569. http://doi.org/10.1080/09500693.2010.519405
    連結:
  15. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz,Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. http://doi.org/10.1002/tea. 20311
    連結:
  16. Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205. http://doi.org/10.1207/s1532690xci2302_1
    連結:
  17. Thiele, R. B., & Treagust, D. F. (1994). An interpretive examination of high school chemistry teachers' analogical explanations. Journal of Research in Science Teaching, 31(3), 227-242. http://doi.org/10.1002/tea.3660310304
    連結:
  18. Van Driel, J. H., & Gräber, W. (2002). The teaching and learning of chemical equilibrium. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 271-292). Kluwer Academic. https://doi.org/10.1007/0-306-47977-X_12
    連結:
  19. Wheeler, A. E., & Kass, H. (1978). Student misconceptions in chemical equilibrium.Science Education, 62(2), 223-232. http://doi.org/10.1002/sce.3730620212
    連結:
  20. 黃芳玫(2001)。九年國民義務教育之回顧與其教育面、經濟面之影響。臺灣經濟預測與政策,31(2),91-118。https://doi.org/10.29629/TEFP.200110. 0005[Huang, F.-M. (2001). The educational and economic impacts of nine-year compulsory education in Taiwan. Taiwan Economic Forecast and Policy, 31(2), 91-118. https://doi.org/10.29629/TEFP.200110.0005]
    連結:
  21. 十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校─自然科學領域(2018)。
  22. 劉俊庚、邱美虹(2010)。從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵。科學教育研究與發展季刊,59,23-54。
  23. 鐘建坪(2013)。模型本位探究策略在不同場域學習成效之研究(未出版之博士論文)。國立臺灣師範大學科學教育研究所。
  24. 鐘建坪(2016)。科學模型與建模:科學建模文本與其學習成效。臺灣化學教育,11。http://chemed.chemistry.org.tw/?p=13944
  25. Giere, R. N. (1988). Explaining science: A cognitive approach. University of Chicago Press.
  26. Johnstone, A. H. (1982). Macro- and micro-chemistry. The School Science Review, 64(227), 377-379.
  27. Jong, J.-P. (2016). The effect of a blended collaborative learning environment in a Small Private Online Course (SPOC): A comparison with a lecture course. Journal of Baltic Science Education, 15(2), 194-203. http://www.scientiasocialis.lt/jbse/?q= node/494
  28. 十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校─自然科學領域(2018)。[Curriculum guidelines of 12-year basic education: Natural science domain for elementary, junior high school and upper secondary school education. (2018).]
  29. 劉俊庚、邱美虹(2010)。從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵。科學教育研究與發展季刊,59,23-54。[Liu, C.-K., & Chiu, M.-H. (2010). From modeling perspectives to analyze modeling processes of atomic theory in senior high school chemistry textbooks and their implications. Research and Development in Science Education Qualterly, 59, 23-54.]
  30. 鐘建坪(2013)。模型本位探究策略在不同場域學習成效之研究(未出版之博士論文)。國立臺灣師範大學科學教育研究所。[Jong, J.-P. (2013). The effects of model-based inquiry strategy in different learning scenarios[Unpublished doctoral dissertation]. National Taiwan Normal University.]
  31. 鐘建坪(2016)。科學模型與建模:科學建模文本與其學習成效。臺灣化學教育,11。http://chemed.chemistry.org.tw/?p=13944[Jong, J.-P. (2016). Scientific models and modeling: The modeling-based text and their learning outcomes. Chemistry Education in Taiwan, 11. http://chemed.chemistry.org.tw/?p=13944]
  32. Bamberger, Y. M., & Elizabeth, A. D. (2013). Middle-school science students’ scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213-238. http://doi.org/10.1080/09500693.2011.624133
  33. Chiu, M.-H., Chou, C.-C., & Liu, C.-J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688-712. http://doi.org/10.1002/tea.10041
  34. Chiu, M.-H., & Lin, J.-W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(12). https://doi.org/10.1186/s43031-019-0012-y
  35. Gericke, N. M, & Hagberg, M. (2010). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40, 605-623. http://doi.org/10.1007/s11165-009-9136-y
  36. Giere, R. N. (1988). Explaining science: A cognitive approach. University of Chicago Press.
  37. Gussarsky, E., & Gorodetsky, M. (1990). On the concept “chemical equilibrium”: The associative framework. Journal of Research in Science Teaching, 27(3), 197-204. https://doi.org/10.1002/tea.3660270303
  38. Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041. http://doi.org/10.1002/(SICI)1098-2736(199611)33:9<1019::AID-TEA4>3.0.CO;2-I
  39. Harrison, A. G., & De Jong, O. (2005). Exploring the use of multiple analogical models when teaching and learning chemical equilibrium. Journal of Research in Science Teaching, 42(10), 1135-1159. http://doi.org/10.1002/tea.20090
  40. Johnstone, A. H. (1982). Macro- and micro-chemistry. The School Science Review, 64(227), 377-379.
  41. Jong, J.-P. (2016). The effect of a blended collaborative learning environment in a Small Private Online Course (SPOC): A comparison with a lecture course. Journal of Baltic Science Education, 15(2), 194-203. http://www.scientiasocialis.lt/jbse/?q=node/494
  42. Jong, J.-P., Chiu, M.-H, & Chung, S.-L. (2015). The use of modeling-based text of ideal gas law to improve students’ modeling competencies. Science Education, 99(5), 986-1018. http://doi.org/10.1002/sce.21164
  43. Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: Some challenges in the case of ‘the atom’. International Journal of Science Education, 22(9), 993-1009. http://doi.org/10.1080/095006900416875
  44. Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modellingbased teaching. International Journal of Science Education, 31(5), 603-630. http://doi.org/10.1080/09500690802538045
  45. Organisation for Economic Co-operation and Development. (2016). PISA 2015 assessment and analytical framework: Science, reading, mathematics and financial literacy. https://doi.org/10.1787/9789264255425-en
  46. Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. http://doi.org/10.1080/09500693.2011.577842
  47. Prins, G. T., Bulte, A. M. W., & Pilot, A. (2011). Evaluation of a design principle for fostering students’ epistemological views on models and modelling using authentic practices as contexts for learning in chemistry education. International Journal of Science Education, 33(11), 1539-1569. http://doi.org/10.1080/09500693.2010.519405
  48. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz,Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. http://doi.org/10.1002/tea.20311
  49. Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205. http://doi.org/10.1207/s1532690xci2302_1
  50. Thiele, R. B., & Treagust, D. F. (1994). An interpretive examination of high school chemistry teachers’ analogical explanations. Journal of Research in Science Teaching, 31(3), 227-242. http://doi.org/10.1002/tea.3660310304
  51. Van Driel, J. H., & Gräber, W. (2002). The teaching and learning of chemical equilibrium. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 271-292). Kluwer Academic. https://doi.org/10.1007/0-306-47977-X_12
  52. Wheeler, A. E., & Kass, H. (1978). Student misconceptions in chemical equilibrium. Science Education, 62(2), 223-232. http://doi.org/10.1002/sce.3730620212