题名

應用類神經網路模擬產品功能屬性組合搭配之研究

并列篇名

Application of Neural Network to Simulate Product Design of a Matching Attribute

DOI

10.29701/JDR.201207.0001

作者

江雅媚(Ya-Mei Chiang);陳文亮(Wen-Liang Chen)

关键词

吹風機 ; 產品設計 ; 類神經網路 ; 人工智慧 ; Hair Dryer ; Product design ; Neural Network ; Artificial Intelligence

期刊名称

設計研究學報

卷期/出版年月

5期(2012 / 07 / 01)

页次

1 - 13

内容语文

繁體中文

中文摘要

全球化的發展趨勢,使得人口族群與生活型態不斷地在轉變,這讓產品的定位與消費者的需求偏好,愈來愈難以掌握,產品的設計亦變得多樣且複雜。因此,本研究針對現有吹風機的功能與特性,利用電腦資料運算的優勢,透過類神經網路進行解析,搜尋滿足消費者的產品屬性組合,藉此推估及預測設計的產品受消費者的滿意程度,有效地將顧客需求聲音轉化成實際產品的特色,提供設計人員迅速且正確的掌握消費者資訊。研究結果顯示,經由推演模擬28組的滿意度問卷調查,可推論出其餘1847組的滿意結果,設計人員即可有效地選用適切的功能特性之組合,因應市場同質產品重複修正與淘汰的壓力,以及改善必須仰賴設計經驗的傳承或依靠設計師的經驗脈絡來完成產品的設計。

英文摘要

The development of trends of globalization and global village accelerates tangible and intangible communication, which transforms populations, races, and life styles continuously and renders the positioning of products and the demands and preferences of consumers harder to grasp; product design has also become diverse and complex accordingly. Therefore, it is to perform research and analysis mainly on the hair dryer's attributes such as functionalities, size, weight, performance, and safety etc. through parallel information processing technologies. This system will simulate the satisfaction rating for the product characteristics through neural networks which implement neuron network and genetic algorithms, to search for the product attribute combination that satisfies consumers, and to estimate and forecast whether consumers will be satisfied with the designed products. In doing so, the voices for the consumer demand can be effectively transformed into special features of an actual product and consumer information can be obtained quickly and correctly. The research results show about combination of product function features: the simulation using neural network can deduce the rest of the 1847 sets of the satisfaction results from 28 sets of satisfaction survey, which can be effectively used by designers to choose the appropriate combination of functional features.

主题分类 人文學 > 藝術
参考文献
  1. Chou, Y.-C.(2004).Applying Neural Networks in Quality Function Deployment Process for Conceptual Design.Journal of the Chinese Institute of Industrial Engineers,21(6),587-596.
    連結:
  2. Kuo, J.-W.,Liu, S.-H.,Wang, H.-M.,Chen, B.(2006).An Empirical Study of Word Error Minimization Approaches for Mandarin Large Vocabulary Speech Recognition.International Journal of Computational Linguistics and Chinese Language Processing,11(3),201-222.
    連結:
  3. 陳俊智、莊明振(2004)。產品形態特徵與構成關係影響消費者感性評價之研究─以水壺的設計為例。設計學報,9(3),43-58。
    連結:
  4. Chang, Guanghsu A.(2001).A Neural Network Model for The Handling Time of Design for Assembly.Journal of the Chinese Institute of Industrial Engineers,9(1),35-48.
  5. Hsiao, S.W.,Huang, S.J.(2002).A Neural Network Based Approach for Product Form Design.Design Studies,23,67-84.
  6. Jones, J. C.(1992).Design methods.New York:Van Nostrand Reinhold.
  7. Liu, X. F.,Noguchi, K.,Zhou, W.(2001).Requirement Acquisition, Analysis and Synthesis in Quality Function Deployment.Concurrent Engineering: Research and Applications,9(1),24-36.
  8. Park, J.-H.,Seo, K.-K.,Wallace, D.(2001).Approximate life cycle assessment of classified products using artificial neural network and statistical analysis in conceptual product design.Proceedings of Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing,Tokyo, Japan:
  9. Ramasamy, J.V.,Rajasekaran, S.(1996).Artificial Neural Network and Genetic Algorithm for the Design Optimization of Industrial Roofs - A Comparison.Computers & Structures,58(4),747-755.
  10. Shen, X. X.,Tan, K.C.,Xie, M.(2000).An integrated approach to innovative product development using Kano's model and QFD.European Journal of Innovation Management,3(2),91-99.
  11. Tsai, H.-C.,Hsiao, S.-W.,Hung, F.-K.(2006).An image evaluation approach for parameter-based product form and color design.Computer-Aided Design,38(2),157-171.
  12. Vellido, A.,Lisboa, P. J. G.,Vaughan, J.(1999).Neural Networks in Business: A Survey of Applications (1992-1998).Expert Systems with Applications,17,51-70.
  13. 石夫乾、孫守遷、徐江(2007)。基於模糊關聯與類神經網路的客戶感性知識挖掘。工程設計學報,14(5),349-358。
  14. 何昭緯(2006)。碩士論文(碩士論文)。國立成功大學工業設計研究所。
  15. 林正中(2007)。以類神經網路辨識服飾造型之研究。紡織綜合研究期刊,17(1),47-58。
  16. 林毓麒(1997)。碩士論文(碩士論文)。國立成功大學工業設計研究所。
  17. 孫朝墩(1999)。產品穩健設計─田口品質工程方法的介紹與應用。中華民國品質學會。
  18. 張斐章、張麗秋、黃浩倫(2004)。類神經網路理論與實務。台北:東華書局。
  19. 陳耀茂、殷純淵(2004)。類神經網路PCNeuron使用手冊。台北市:鼎茂圖書。
  20. 葉怡成(2003)。類神經網路─模式應用與實作。台北市:儒林圖書。
  21. 葉怡成(1998)。類神經網路─模式應用與實作。台北市:儒林圖書。
  22. 蔡瑞煌(1995)。類神經網路概論。台北:三民書局。
  23. 闕頌廉(2001)。應用模糊數學。台北市:科技圖書。
  24. 藎壚(1991)。實用模糊數學。台北:亞東書局。
被引用次数
  1. 陳佳安、周遵儒(2018)。運用資料探勘於自動化色彩語意分析之研究。設計研究學報,11,17-36。