题名

以資料包絡分析法衡量企業放款之信用風險

并列篇名

Measuring the Credit Risk of Corporations via Data Envelopment Analysis

DOI

10.6697/TBPJ.201012_4(1).0002

作者

呂素蓮(Su-Lien Lu);李國榮(Kuo-Jung Lee);鄒明倫(Ming-Lun Zou)

关键词

信用風險 ; 資料包絡分析法 ; 因素分析 ; 區別分析 ; Credit Risk ; Data Envelopment Analysis ; Factor Analysis ; Discriminant Analysis

期刊名称

臺灣企業績效學刊

卷期/出版年月

4卷1期(2010 / 12 / 01)

页次

23 - 44

内容语文

繁體中文

中文摘要

風險課題對金融機構而言一直是最受關切的焦點之一,從1988年的舊版巴塞爾資本協定到2006年所實施的新版巴塞爾資本協定,都是希冀金融機構在從事資本配置時能夠配合上述準則,以達到有效的風險控管。基本上,對於銀行業來說,獲利的多寡是其生存的主要關鍵,投資與放款便是其獲利的主要來源,故建立良好的投資策略與客觀的放款標準才是銀行獲利與生存的永續目標。實務上,“企業放款”是本國銀行最主要的放款業務,因此在進行企業授信時必須謹慎衡量授信企業的違約風險,以降低銀行所面對之信用風險。本文之研究目的為使用資料包絡分析法評估放款企業之信用評分,該研究方法之優點能客觀計測授信戶之信用評分,作為放款的標準,並彌補主觀授信觀點的缺失,本文研究期間與樣本為1998-2007年台灣的上市、上櫃與興櫃企業,最後,以迴歸分析與區別分析進行穩健性檢定,驗證上述模型之效力。希冀本文之評估模式能作為銀行評估與衡量信用風險之參考指標,並落實新版巴塞爾資本協定風險管理之精神。

英文摘要

The credit risk management is one of the most importance issues for the financial institutions. This is also indicated by the Basel Committee on Banking Supervision which formalizes the universal approach to measure credit risk for financial institutions. As we know, banks earn profits from loans, and enterprises are main borrowers. Thus, credit risk management for enterprise loans is a major concern for banks. This paper adopts a formal methodology, data envelopment analysis, to assess the credit risk of enterprise. The model is illustrated by listed, OTC and emerging companies from 1998 to 2007 in Taiwan. First, this paper applies factor analysis and data envelopment analysis to derive the credit scoring of domestic corporations. Second, the results of credit scoring were validated by regression analysis and discriminant analysis. Consequently, this paper proposes a methodology, data envelopment analysis, which will help banks to measure the credit risk of loans. The empirical results can provide banks to make effective lending decisions and face the Basel Capital Accord in the future.

主题分类 社會科學 > 社會科學綜合
参考文献
  1. Chang, T.C. ,Chiu, Y.H.(2006).Affecting factors on risk-adjusted efficiency in Taiwans banking industry.Contemporary Economic Policy,24(4),634-648.
  2. Emel, A.B.,Oral, M.,Reisman, A.,Yolalan, R.(2003).A credit scoring approach for the commercial banking sector.Socio-Economic Planning Sciences,37(2),103-123.
  3. Ho, C.T.B.,Wu, D.D.(2009).Online banking performance evaluation using data envelopment analysis and principal component analysis.Computers & Operations Research,36(6),1835-1842.
  4. Hu, W.C.,Lai, M.C.,Huang, H.C.(2009).Rating the relative efficiency of financial holding companies in an emerging economy: A multiple DEA approach.Expert Systems with Applications,36(3),5592-5599.
  5. Liu, S.T.(2009).Slacks-based efficiency measures for predicting bank performance.Expert Systems with Applications,36(2),1835-1842.
  6. Min, J.H.,Lee, Y.C.(2008).A practical approach to credit scoring.Expert Systems with Applications,35(4),1762-1770.
  7. Pasiouras, F.(2008).Estimating the technical and scale efficiency of Greek commercial banks: The impact of credit risk, off-balance sheet activities, and international operations.Research in International Business and Finance,22(3),301-318.
  8. Premachandra, I.M.,Bhabra, G.S.,Sueyosh, T. i(2009).DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique.European Journal of Operational Research,193(2),412-424.
  9. Xu, X.,Wang, Y.(2009).Financial failure prediction using efficiency as a predictor.Expert Systems with Applications,36(1),366-373.
  10. 楊臻海(2005)。我國銀行授信行為與景氣循環的關係:兼論新版巴塞爾資本協定的順循環影響效果暨其因應之道。中央銀行季刊,28(1),43-72。