题名

模糊多目標非線性規劃模式於多專案排程與碳排放成本效能之應用

并列篇名

Application of Fuzzy Nonlinear Programming Model on Cost-effectiveness for Multi-project Scheduling and Carbon Emissions

DOI

10.6697/TBPJ.201712_11(1).0004

作者

蔡登茂(Deng-Maw Tsai);李偉齊(Wei-Chi Li)

关键词

碳排放成本 ; 有限資源 ; 多專案排程 ; 模糊多目標非線性規劃 ; Carbon Emission Costs ; Resource-constrained ; Multi-objective Project Scheduling ; Fuzzy Multi-objective Nonlinear Programming

期刊名称

臺灣企業績效學刊

卷期/出版年月

11卷1期(2017 / 12 / 01)

页次

71 - 97

内容语文

繁體中文

中文摘要

碳排放法規已成為當今控制企業碳排放量的重要機制。為符合法規的要求企業必須在生產規劃決策上進行改變。為因應此種趨勢與潮流,本研究將碳排放成本加入於有限資源多專案排程的淨現值中進行探討,並以最大化總專案淨現值與最大化總專案自由寬裕時間此兩項業界常用之績效指標作為研究主題,建構考量碳排放成本之有限資源多專案排程混合整數非線性規劃模式,並藉由模糊集合理論之導入,將混合整數非線性規劃問題轉換成模糊多目標非線性規劃模式,並利用決策滿意度函數,提供專案經理人在進行多目標專案排程決策之重要參考。本研究除提出模糊多目標非線性規劃模式外,也將舉例進行實務案例之應用說明,並針對此案例中重要之決策變數對決策滿意度函數之影響進行敏感度分析,以提供專案經理人做為決策輔助之重要參考。

英文摘要

Carbon emission regulation policies have emerged as mechanisms to control firms' carbon emissions. To meet regulatory requirements, firms can make changes in their production planning decisions. The purpose of this study is to formulate a fuzzy multi-objective non-linear programming (FMONLP) model to analysis the cost-effectiveness for multi-project scheduling and carbon emissions. The model is capable of quantitatively solving multiple problems including project net present value increase, carbon emissions cost saving, and project slack time increase to obtain a balanced multi-project scheduling scheme using a multi-objective non-linear programming technique. An optimal satisfactory level is deployed to demonstrate the trade-offs among fuzzy multi-objectives for the use of project managers. Numerical examples are presented, and results are discussed. The results showed that the developed model could be found useful by mangers who wish to jointly maximize the project net present value and total slack time.

主题分类 社會科學 > 社會科學綜合
参考文献
  1. Arıkan, F.,Güngör, Z.(2001).An application of fuzzy goal programming to a multi objective project network problem.Fuzzy Sets and Systems,119(1),49-58.
  2. Baroum, S. M.,Patterson, J. H.(1996).The development of cash flow weight procedures for maximizing the net present value of a project.Journal of Operations Management,14(3),209-227.
  3. Bianco, L.,Caramia, M.(2012).An exact algorithm to minimize the makespan in project scheduling with scarce resources and generalized precedence relations.European Journal of Operational Research,219(1),73-85.
  4. Chakrabortty, R. K.,Sarker, R. A.,Essam, D. L.(2017).Resource constrained project scheduling with uncertain activity durations.Computers & Industrial Engineering,112(1),537-550.
  5. Chakrabortty, R. K.,Sarker, R. A.,Essam, D. L.(2016).Multi-mode resource constrained project scheduling under resource disruptions.Computers and Chemical Engineering,88(8),13-29.
  6. Creemers, S.(2017).Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure.European Journal of Operational Research,267(1),16-22.
  7. Doersch, R. H.,Patterson, J. H.(1977).Scheduling a project to maximize its present value: A zero-one programming approach.Management Science,23(8),882-889.
  8. Erginel, N.,Gecer, A.(2016).Fuzzy multi-objective decision model for calibration supplier selection problem.Computers & Industrial Engineering,102(1),166-174.
  9. Hannan, E. L.(1981).Linear programming with multiple fuzzy goals.Fuzzy Sets and Systems,6(3),235-248.
  10. Kelley, J. E.(1963).The Critical Path Method Resources Planning and Scheduling.Englewood Cliffs, New Jersey:Prentice-hall.
  11. Kolisch, R.,Padman, R.(2001).An integrated survey of deterministic project scheduling.Omega,29(3),249-272.
  12. Kurtulus, I. S.,Davis, E. W.(1982).Multi-project scheduling: Categorization of project performance.Management Science,28(2),161-172.
  13. Kurtulus, I. S.,Narula, S. C.(1985).Multi-project scheduling: Analysis of project performance.IIE Transactions,17(1),58-66.
  14. Leyman, P.,Vanhoucke, M.(2017).Capital- and resource-constrained project scheduling with net present value optimization.European Journal of Operational Research,256(3),757-776.
  15. Lin, S. W.,Ying, K. C.(2015).Order acceptance and scheduling to maximize total net revenue in permutation flowshops with weighted tardiness.Applied Soft Computing,30(1),462-474.
  16. Lorterapong, P.(1994).A fuzzy heuristic method for resource-constrained project scheduling.Project Management Journal,25(4),12-18.
  17. Luhandjula, M. K.(1982).Compensatory operators in fuzzy programming with multiple objectives.Fuzzy Sets and Systems,8(3),245-252.
  18. Lushchakova, I. N.(2012).Preemptive scheduling of two uniform parallel machines to minimize total tardiness.European Journal of Operational,219(1),27-33.
  19. Patterson, J. H.(1973).Alternative methods of project scheduling with limited resources.Naval Research Logistics Quarterly,20(4),767-784.
  20. Russell, A. H.(1970).Cash flows in networks.Management Science,16(5),357-373.
  21. Sakawa, M.(1988).An interactive fuzzy satisfying method for multi-objective linear fractional programming problems.Fuzzy Sets and Systems,28(2),129-144.
  22. Su, T. S.(2017).A fuzzy multi-objective linear programming model for solving remanufacturing planning problems with multiple products and joint components.Computers & Industrial Engineering,110(1),242-254.
  23. Zadeh, L. A.(1965).Fuzzy Set.Information and Control,8(3),38-53.
  24. Zheng, Z.,Guo, Z.,Zhu, Y.,Zhang, X.(2014).A critical chains based distributed multi-project scheduling approach.Neurocomputing,143(2),282-293.
  25. Zimmermann, H. J.(1976).Description and optimization of fuzzy systems.International Journal of General Systems,2(1),209-215.
  26. Zimmermann, H. J.(1978).Fuzzy programming and linear programming with several objective functions.Fuzzy Sets and Systems,1(1),45-56.
  27. 邱煥能、蔡登茂(1993)。有限資源多專案排程單專案法與多專案法之比較研究。中國工業工程學刊,10(3),171-179。
  28. 陳建助(2009)。碩士論文(碩士論文)。國立屏東科技大學工業管理研究所。
  29. 蔡登茂(2001)。博士論文(博士論文)。台北市,國立台灣科技大學工業管理所。