题名

整合獨立成份影像重建技術與分類迴歸樹在製程監控上之應用

并列篇名

Process Monitoring with ICA-based Image Reconstruction Scheme and CART Approach

DOI

10.29770/JTCMT.200903.0005

作者

黃獻平(Shien-Ping Huang)

关键词

統計製程管制 ; 工程製程管制 ; 獨立成份分析 ; 分類迴歸樹 ; Statistical Process Control SPC ; Engineering Process Control EPC ; Independent Component Analysis ICA ; Classification and Regression Tree CART

期刊名称

台北海洋技術學院學報

卷期/出版年月

2卷1期(2009 / 03 / 01)

页次

59 - 75

内容语文

繁體中文

中文摘要

生產製程的監測與管制一直是實務上常被用來於維持高品質產品的有效方法。然而,品質管制中的統計製程管制(statistical Process Control, SPC)及工程製程管制(Engineering Process Control, EPC)技術,卻又常無怯有效的偵測出製程的異常狀態,特別是在當製程數據具有某種程度的自我相關性質時。在本論文中,一個結合ICA影像重建機制與分類迴歸樹(Classification and Regression Tree, CART)的方法被提出來進行製程干擾項的辨識工作。研究結果顯示在辨識不同型態的干擾資料時,ICA影像重建技術可以成功的將干擾資訊明顯化。為了驗證在本研究中所提整合方法的有效性,我們針對兩種不同類型的常見干擾:平移式干擾(step-change disturbance)與線性式干擾(linear disturbance)進行驗證與測試。此外,我們也運用了傳統的蕭華特(Shewhart)管制圖與CUSUM管制圖來進行結果的比較。根據研究結果顯示,ICA影像重建技術與分類迴歸樹方法的應用可以成功的辨識不同類型的製程干擾。此外,論文中所提方法的辨識成功率,也較不會受到資料中相關性高低的影響。

英文摘要

Monitoring the producing process is always used as the most efficient way to maintain the high quality products. However, based on the Statistical Process Control, SPC, and Engineering Process Control, EPC technique can not quite accurately detect all exceptional situations; especially, when the producing process data have certain level self-related quality. In this paper, a integration of ICA image reconstruction and Classification and Regression Tree, CART, was addressed as the solution for identity of the unusual factors in producing process. The result of this research showed ICA image reconstruction can distinct the inferences successfully when identifying different inference sources. The two different common inferences, step-change disturbance and linear disturbance, were aimed and tested as main factors. Furthermore, Shewhart restrain sketch and CUSUM restrain sketch were the methods used as gathering data in order to compare. Moreover, the identification rate mentioned in this paper will not be affected by the related date as well.

主题分类 人文學 > 人文學綜合
工程學 > 工程學綜合
社會科學 > 社會科學綜合
参考文献
  1. Anderson, J. A.,E. Rosenfeld(1998).Neurocomputing: Foundations of research.MA MIT Press.
  2. B. Ripley.(1994).Neural networks and related methods for classification.J. R. Statist. Soc. B. 2000,56,409-456.
  3. Ben-Gal, I.,Morag G.,Shmilovici A.(2003).CSPC: A monitoring procedure for state dependent processes.Technornetrics,45,293-311.
  4. Box, G. E. P.,Jenkins, G. M.,Reinsel, G. C.(1992).Time Series Analysis. Forecasting and Control.Englewood Cliffs. NJ:Prentice-Hall.
  5. Box, G. E. P.,Kramer, T.(1992).Statistical process monitoring and feedback adjustment-a discussion.Technometrics,34,251-285.
  6. Box, G. E. P.,Luceno, A.(1997).Statistical control by monitoring and feedback adjustment.New York, NY:John Wiley and Sons.
  7. C. Jutten,J. Herault.(1991).Blind separation of sources pact i: An adaptive algorithm based on neuromimetic architecture.Signal Processing,24(1),1-10.
  8. Cheng, B.,D. M. Titterington(1994).Neural Networks: A review from a statistical perspective.Statistical Science,1(1),2-54.
  9. Cichocki, A.,Amari, S. I.(2002).Adaptive blind signal and image processing: Learning algorithms and applications.New York, NY:John Wiley and Sons.
  10. Comon, P.(1994).Independent component analysis: anew concept?.Signal Processing,36,287-314.
  11. David, V.,Sanchez, A.(2002).Frontiers of research in BSS/ICA.Neruocomputing,49,7-23.
  12. Faltin, F. W.,Hahn, G. J.,Tucker, W. T.,Vander Wiei, S. A.(1993).Algorithrnic statistical process control: some practical observations.International Statistic Reviews,61,67-80.
  13. H. S. Stern.(1996).Neural networks in applied statistics.Technometrics,38,205-220.
  14. Hyvarinen, A.(1999).The fixed-point algorithm and maximum likelihood estimation for independent component analysis.Neural Processing Letters,10,1-5.
  15. Hyvarinen, A.(1998).Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood.Neurocomputing,22,49-67.
  16. Hyvarinen, A.,Karhucen, J.,Oja, E.(2001).Independent Component Analysis.New York. NY:John Wiley and Sons.
  17. Hyvarinen, A.,Oja, E.(1997).A fast fixed-point algorithm for independent component analysis.Neural Computation,9,1483-1492.
  18. Hyvarinen, A.,Oja, E.(2000).Independent component analysis: algorithms and applications.Neural Networks,13,411-430.
  19. Jie Zhang.,A. S. Morris.(2000).A sequential learning approach for single bidden layer neural networks,11(1),65-80.
  20. Jones, W. P.,J. Hoskins.(1987).Back-Propagation: A generalized delta learning rule.Byte.
  21. Lapedes, A.,Farber, R.(1987).LA-UR LA-UR-87-2662.Los Alamos. NM:Los Alamos National Laboratory.
  22. Lee, J. M.,Yoo, C.,Lee, I. B.(2004).Statistical process monitoring with independent component analysis.Journal of Process Control,14(5),467-485.
  23. Lee, T. W.(1998).Independent Component Analysis: Theory and Application.Boston. MA:Kluwer Academic.
  24. Luceno, A.(1995).Choosing the EWMA parameter in engineering process control.Journal of Quality Technology,27,162-168.
  25. Macgregor, J. F.(1998).On-line statistical process control.Chemical Engineering Progress,84,21-31.
  26. Macgregor, J. F.,Harris, T. J.,Wright, J. D.(1984).Duality between the control of processes subject to randomly occurring deterministic disturbances and ARIMA stochastic disturbances.Technometrics,26,389-397.
  27. Montgomery, D. C.,Keats, J. B.,Runger, G. C.,Messina, W. S.(1994).Integrating statistical process control arid engineering process control.Journal of Quality Technology,26,79-87.
  28. Park, J.,Sandberg, I.W.(1991).Universal approximation using radial basis function networks.Neural Computation,3(2),246-257.
  29. R. P. Lippmann.(1987).An introduction to computing with neural nets.IEEE ASSP Magazine,4-22.
  30. Rissanen, J.(1983).A universal data compression system.IEEE Transactions on Information Theory,29,656-664.
  31. Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.(1986).Learning internal representation by error propagation.Parallel distributed processing,1,318-362.
  32. Rumelhart, D. E.,McClelland, J. L.(1986).Parallel distributed processing.Cambridge:MTT Press.
  33. S. Haykin.(1994).Neural Networks: A Comprehensive Foundation.New York:Macmillan College Publishing Company.
  34. Shan, Y. E.,Runger, G. C.,Haddock, J.,Wallace, W. A.(1999).Adaptive controllers to integrate SPC and EPC.Communications in Statistics-Simulation and Computation,28,13-36.
  35. Shao, Y. E.(1998).Integrated application of the cumulative score control chart and engineering process control.Statistic Sinica,8,239-252.
  36. Shao, Y. E.,Chiu, C. C.(1999).Developing identification techniques with the integrated use of SPC/BPC and neural networks.Quality and Reliability Engineering International,15,287-294.
  37. Y. Pao.(1989).Adaptive pattern recognition and neural networks.Addison Wesley.